Skip to content
roch smets edited this page Apr 8, 2020 · 6 revisions

Predictor Predictor Corrector scheme

from Kunz et al., 2014

Initially, all quantities are known at time step n. In 3 main steps :

Predictor-1 :

  • Bp1(n+1) with Maxwell-Faraday using B(n) & E(n()
  • Jp1(n+1) with Maxwell-Ampère using Bp1(n+1)
  • Ep1(n+1) with Ohm's law using Bp1(n+1), N(n), V(n), Jp1(n+1)

and then build E & B at n+1/2

  • Bp1(n+1/2) = 1/2 [B(n)+Bp1(n+1)]
  • Ep1(n+1/2) = 1/2 [E(n)+Ep1(n+1)]

so the particles can be pushed at n+1

  • vp(n+1) with Newton's law using Bp1(n+1/2), Ep1(n+1/2) and v(n)
  • xp(n+1) with motion eq. using vp(n+1)

then moments are deposited on the grid

  • Vp(n+1) with shape fonction and vp(n+1)
  • Np(n+1) with shape fonction and xp(n+1)

Predictor-2 :

  • Bp2(n+1) with Maxwell-Faraday using B(n) & Ep1(n+1/2)
  • Jp2(n+1) with Maxwell-Ampère using Bp2(n+1)
  • Ep2(n+1) with Ohm's law using Bp2(n+1), Np(n+1), Vp(n+1), Jp2(n+1)

and then build E & B at n+1/2

  • Bp2(n+1/2) = 1/2 [B(n)+Bp2(n+1)]
  • Ep2(n+1/2) = 1/2 [E(n)+Ep2(n+1)]

Corrector :

  • B(n+1) with Maxwell-Faraday using B(n) & Ep2(n+1/2)
  • J(n+1) with Maxwell-Ampère using B(n+1)

so the particles can be pushed at n+1

  • v(n+1) with Newton's law using Bp2(n+1/2), Ep2(n+1/2) and v(n)
  • x(n+1) with motion eq. using v(n+1)

then moments are deposited on the grid

  • V(n+1) with shape fonction and v(n+1)
  • N(n+1) with shape fonction and x(n+1)

and finally get the electric field

  • E(n+1) with Ohm's law using B(n+1), N(n+1), V(n+1), J(n+1)
Clone this wiki locally