forked from GuYuc/WS-DAN.PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
207 lines (167 loc) · 7.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""Utils
Created: Nov 11,2019 - Yuchong Gu
Revised: Dec 03,2019 - Yuchong Gu
"""
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
##############################################
# Center Loss for Attention Regularization
##############################################
class CenterLoss(nn.Module):
def __init__(self):
super(CenterLoss, self).__init__()
self.l2_loss = nn.MSELoss(reduction='sum') # 使用MSELoss损失函数
def forward(self, outputs, targets):
return self.l2_loss(outputs, targets) / outputs.size(0)
##################################
# Metric
##################################
class Metric(object):
pass
class AverageMeter(Metric):
def __init__(self, name='loss'):
self.name = name
self.reset()
def reset(self):
self.scores = 0.
self.total_num = 0.
def __call__(self, batch_score, sample_num=1):
self.scores += batch_score # 每个分支的和
self.total_num += sample_num # 总样本数
return self.scores / self.total_num # 平均每个分支的得分
class TopKAccuracyMetric(Metric):
def __init__(self, topk=(1,)):
self.name = 'topk_accuracy'
self.topk = topk
self.maxk = max(topk)
self.reset()
def reset(self):
self.corrects = np.zeros(len(self.topk)) #np.zeros()是生成用0填充的数组
self.num_samples = 0.
def __call__(self, output, target):
"""Computes the precision@k for the specified values of k"""
self.num_samples += target.size(0)
_, pred = output.topk(self.maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred)) # 在torch里面,view函数相当于numpy的reshape,在函数的参数中经常可以看到-1例如x.view(-1, 4),这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成4列,那不确定的地方就可以写成-1
for i, k in enumerate(self.topk): # 枚举
correct_k = correct[:k].view(-1).float().sum(0) # view(-1)不确定有几列
self.corrects[i] += correct_k.item()
return self.corrects * 100. / self.num_samples
##################################
# Callback
##################################
class Callback(object):
def __init__(self):
pass
def on_epoch_begin(self):
pass
def on_epoch_end(self, *args):
pass
class ModelCheckpoint(Callback):
def __init__(self, savepath, monitor='val_topk_accuracy', mode='max'):
self.savepath = savepath
self.monitor = monitor
self.mode = mode
self.reset()
super(ModelCheckpoint, self).__init__()
def reset(self):
if self.mode == 'max':
self.best_score = float('-inf')
else:
self.best_score = float('inf')
def set_best_score(self, score):
if isinstance(score, np.ndarray):
self.best_score = score[0]
else:
self.best_score = score
def on_epoch_begin(self):
pass
def on_epoch_end(self, logs, net, **kwargs):
current_score = logs[self.monitor]
if isinstance(current_score, np.ndarray):
current_score = current_score[0]
if (self.mode == 'max' and current_score > self.best_score) or \
(self.mode == 'min' and current_score < self.best_score):
self.best_score = current_score
if isinstance(net, torch.nn.DataParallel):
state_dict = net.module.state_dict()
else:
state_dict = net.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].cpu()
if 'feature_center' in kwargs:
feature_center = kwargs['feature_center']
feature_center = feature_center.cpu()
torch.save({
'logs': logs,
'state_dict': state_dict,
'feature_center': feature_center}, self.savepath)
else:
torch.save({
'logs': logs,
'state_dict': state_dict}, self.savepath)
##################################
# augment function
##################################
def batch_augment(images, attention_map, mode='crop', theta=0.5, padding_ratio=0.1):
batches, _, imgH, imgW = images.size()
if mode == 'crop':
crop_images = []
for batch_index in range(batches):
atten_map = attention_map[batch_index:batch_index + 1]
if isinstance(theta, tuple):
theta_c = random.uniform(*theta) * atten_map.max() # uniform() 方法将随机生成下一个实数,它在 [x, y] 范围内。
else:
theta_c = theta * atten_map.max()
crop_mask = F.upsample_bilinear(atten_map, size=(imgH, imgW)) >= theta_c
nonzero_indices = torch.nonzero(crop_mask[0, 0, ...])
height_min = max(int(nonzero_indices[:, 0].min().item() - padding_ratio * imgH), 0)
height_max = min(int(nonzero_indices[:, 0].max().item() + padding_ratio * imgH), imgH)
width_min = max(int(nonzero_indices[:, 1].min().item() - padding_ratio * imgW), 0)
width_max = min(int(nonzero_indices[:, 1].max().item() + padding_ratio * imgW), imgW)
crop_images.append(
F.upsample_bilinear(images[batch_index:batch_index + 1, :, height_min:height_max, width_min:width_max],
size=(imgH, imgW)))
crop_images = torch.cat(crop_images, dim=0)
return crop_images
elif mode == 'drop':
drop_masks = []
for batch_index in range(batches):
atten_map = attention_map[batch_index:batch_index + 1]
if isinstance(theta, tuple):
theta_d = random.uniform(*theta) * atten_map.max()
else:
theta_d = theta * atten_map.max()
drop_masks.append(F.upsample_bilinear(atten_map, size=(imgH, imgW)) < theta_d)
drop_masks = torch.cat(drop_masks, dim=0)
drop_images = images * drop_masks.float()
return drop_images
else:
raise ValueError('Expected mode in [\'crop\', \'drop\'], but received unsupported augmentation method %s' % mode)
##################################
# transform in dataset
##################################
def get_transform(resize, phase='train'):
if phase == 'train':
# torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
# torchvision.transforms.Compose()类。这个类的主要作用是串联多个图片变换的操作
return transforms.Compose([
transforms.Resize(size=(int(resize[0] / 0.875), int(resize[1] / 0.875))),
transforms.RandomCrop(resize),
transforms.RandomHorizontalFlip(0.5), # 随机水平翻转
transforms.ColorJitter(brightness=0.126, saturation=0.5), # 对颜色的数据增强:图像亮度、饱和度、对比度变化
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
return transforms.Compose([
transforms.Resize(size=(int(resize[0] / 0.875), int(resize[1] / 0.875))),
transforms.CenterCrop(resize), # 均衡的缩放图像(保持图像原始比例),使图片的两个坐标(宽、高)都大于等于相应的视图坐标(负的内边距)。图像则位于视图的中央。
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])