-
Notifications
You must be signed in to change notification settings - Fork 0
/
DG_INITIAL.py
executable file
·682 lines (578 loc) · 29.1 KB
/
DG_INITIAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#==============================================================================
# Network of Dentate gyrus based on Chavlis et al, Hippocampus 2017
#==============================================================================
# CONTROL MODEL
###############################################################################
import os
from brian import *
from brian.library.ionic_currents import *
from brian.library.IF import *
import numpy as np
import time
overlap = '80'
trial_i = [1]
Trial = trial_i[0]
trial = 1
maindir=os.getcwd()
# Initial pattern
scale_fac = 4
N_input = 100 * scale_fac
N_granule = 500 * scale_fac
N_basket = 25 * scale_fac
N_mossy = 20 * scale_fac
N_hipp = 10 * scale_fac
d_input = 0.10 # active input density
# Active pattern of neurons
path = 'input_patterns/scale_'+str(scale_fac)+'/d_input_0.1/'
active_pattern = list(np.load(path+'active_pattern_'+str(Trial)+'.npy'))
inactive = [x for x in xrange(N_input) if x not in active_pattern]
reinit(states = True)
clear(erase = True, all = True)
print "\nBuilding the Network... "
# CONNECTIVITY PARAMETERS
# General parameters
E_nmda = 0 * mV # NMDA reversal potential
E_ampa = 0 * mV # AMPA reversal potential
E_gaba = -86 * mV # GABA reversal potential
gamma = 0.072 * mV**-1 # Mg Concentration factor
alpha_nmda = 0.5 * ms**-1 # NMDA scale factor
alpha_ampa = 1 * ms**-1 # AMPA scale factor
alpha_gaba = 1 * ms**-1 # GABA scale factor
# EC CELLS ---> GRANULE CELLS
g_ampa_eg = 0.8066 * nS
g_nmda_eg = 1.0800 * g_ampa_eg
# EC CELLS ---> HIPP CELLS
g_ampa_eh = 0.24 * nS
g_nmda_eh = 1.15 * g_ampa_eh
# SOURCE: GRANULE CELLS
# GRANULE CELLS ---> BASKET CELLS
g_ampa_gb = 0.21 * nS
g_nmda_gb = 1.50 * g_ampa_gb
# GRANULE CELLS ---> MOSSY CELLS
g_ampa_gm = 0.50 * nS
g_nmda_gm = 1.05 * g_ampa_gm
# SOURCE: MOSSY CELLS
# MOSSY CELLS ---> GRANULE CELLS
g_ampa_mg = 0.1066 * nS
g_nmda_mg = 1.0800 * g_ampa_mg
# MOSSY CELLS ---> BASKET CELLS
g_ampa_mb = 0.35 * nS
g_nmda_mb = 1.10 * g_ampa_mb
# SOURCE: BASKET CELLS
# BASKET CELLS ---> GRANULE CELLS
g_gaba_bg = 14.0 * nS
# SOURCE: HIPP CELLS
# HIPP CELLS ---> GRANULE CELLS
g_gaba_hg = 0.12 * nS
#=======================================================================================================================
#=======================================================================================================================
# INPUT CELLS (ENTORHINAL CORTEX)
from poisson_input import *
rate = 45*Hz
simtime = 1000*ms
t1 = 300 * ms
t2 = 10 * ms
spiketimes = poisson_input(active_pattern, N_input, rate, simtime, t1, t2)
Input_ec = SpikeGeneratorGroup(N_input, spiketimes)
#=======================================================================================================================
# GRANULE CELLS
# Parameters
gl_g = 2.57 * nS # leakage conductance
El_g = -87.00 * mV # reversal-resting potential
Cm_g = 0.08 * nF # membrane capacitance
v_th_g = -56.00 * mV # threshold potential
v_reset_g = -74.00 * mV # reset potential
# AMPA/NMDA/GABA Kinetics
t_nmda_decay_g = 50.0 * ms # NMDA decay time constant
t_nmda_rise_g = 0.33 * ms # NMDA rise time constant
t_ampa_decay_g = 2.5 * ms # AMPA decay time constant
t_ampa_rise_g = 0.1 * ms # AMPA rise time constant
t_gaba_decay_g = 6.8 * ms # GABA decay time constant
t_gaba_rise_g = 0.9 * ms # GABA rise time constant
# AMPA/NMDA/GABA Model Parameters
gamma_g = 0.04 * mV**-1 # the steepness of Mg sensitivity of Mg unblock
Mg = 2.0 # [mM]--mili Molar - the extracellular Magnesium concentration
eta = 0.2 # [mM**-1] -1- mili Molar **(-1) - Magnesium sensitivity of unblock
alpha_nmda_g = 2.0 * ms**-1
alpha_ampa = 1.0 * ms**-1
alpha_gaba = 1.0 * ms**-1
# NOISE
g_ampa_gn = 0.008 * nS
g_nmda_gn = 0.008 * nS
# AHP patrameters
tau_ahp = 45.0 * ms
g_ahp = 0.2 * nS
# Synaptic current equations @ SOMA
eq_soma = Equations('''
I_syn_g = I_nmda_eg + I_ampa_eg + I_nmda_mg + I_ampa_mg + I_nmda_gn + I_ampa_gn + I_gaba_bg +I_gaba_hg + I_Sahp : amp
I_nmda_eg = g_nmda_eg*(vm - E_nmda)*s_nmda_eg/(1.0 + eta*Mg*exp(-gamma*vm)) : amp
I_ampa_eg = g_ampa_eg*(vm - E_ampa)*s_ampa_eg : amp
s_nmda_eg : 1
s_ampa_eg : 1
I_nmda_mg = g_nmda_mg*(vm - E_nmda)*s_nmda_mg/(1.0 + eta*Mg*exp(-gamma*vm)) : amp
I_ampa_mg = g_ampa_mg*(vm - E_ampa)*s_ampa_mg : amp
s_nmda_mg : 1
s_ampa_mg : 1
I_gaba_bg = g_gaba_bg*(vm - E_gaba)*s_gaba_bg : amp
s_gaba_bg : 1
I_gaba_hg = g_gaba_hg*(vm - E_gaba)*s_gaba_hg : amp
s_gaba_hg : 1
I_nmda_gn = g_nmda_gn*(vm - E_nmda)*s_nmda_gn*(1.0 + eta*Mg*exp(-gamma*vm)) : amp
I_ampa_gn = g_ampa_gn*(vm - E_ampa)*s_ampa_gn : amp
s_nmda_gn : 1
s_ampa_gn : 1
I_Sahp : amp
dI_Sahp/dt = (g_ahp*(vm-El_g)-I_Sahp)/tau_ahp : amp
''')
# Soma equation
granule_eqs = MembraneEquation(Cm_g)
granule_eqs += leak_current(gl_g, El_g)
granule_eqs += IonicCurrent('I = I_syn_g : amp')
granule_eqs += eq_soma
granule = NeuronGroup(N_granule, model = granule_eqs, threshold = 'vm > v_th_g',
reset = 'vm = v_reset_g; I_Sahp += 0.0450*nA',
refractory = 20 * ms, compile = True, freeze = True)
# Initialization of membrane potential
granule.vm = El_g
#Clustering of granule cells
counter = 20
N_cl = len(granule)/counter
granule_cl = {}
for gran in xrange(N_cl):
granule_cl[gran] = granule.subgroup(counter)
#=======================================================================================================================
#=======================================================================================================================
# BASKET CELLS
# Parameters
gl_b = 18.054 * nS # leakage conductance
El_b = -52 * mV # reversal-resting potential
Cm_b = 0.1793 * nF # membrane capacitance
v_th_b = -39 * mV # threshold potential
v_reset_b = -45 * mV # reset potential
DeltaT_b = 2 * mV # slope factor
# Synaptic Parameters
gamma = 0.072 * mV**-1 # Mg Concentration factor
alpha_nmda = 0.5 * ms**-1 # NMDA scale factor
alpha_ampa = 1 * ms**-1 # AMPA scale factor
alpha_gaba = 1 * ms**-1 # GABA scale factor
#AMPA/NMDA Kinetics
t_nmda_decay_b = 130.0 * ms # NMDA decay time constant
t_nmda_rise_b = 10.0 * ms # NMDA rise time constant
t_ampa_decay_b = 4.2 * ms # AMPA decay time constant
t_ampa_rise_b = 1.2 * ms # AMPA rise time constant
# NOISE
g_nmda_bn = 2.5 * nS # NMDA maximum conductance
g_ampa_bn = 3.5 * nS # AMPA maximum conductance
t_nmda_decay_bn = 130 * ms # NMDA decay time constant
t_nmda_rise_bn = 10 * ms # NMDA rise time constant
t_ampa_decay_bn = 4.2 * ms # AMPA decay time constant
t_ampa_rise_bn = 1.2 * ms # AMPA rise time constant
# Synaptic current equations
eq_soma_b = Equations('''
I_syn_b = I_nmda_gb + I_ampa_gb + I_nmda_mb + I_ampa_mb + I_nmda_bn + I_ampa_bn : amp
I_nmda_gb = g_nmda_gb*(vm - E_nmda)*s_nmda_gb*(1.0/(1 + exp(-gamma*vm)*(1.0/3.57))) : amp
I_ampa_gb = g_ampa_gb*(vm - E_ampa)*s_ampa_gb : amp
s_nmda_gb : 1
s_ampa_gb : 1
I_nmda_mb = g_nmda_mb*(vm - E_nmda)*s_nmda_mb*(1.0/(1 + exp(-gamma*vm)*(1.0/3.57))) : amp
I_ampa_mb = g_ampa_mb*(vm - E_ampa)*s_ampa_mb : amp
s_nmda_mb : 1
s_ampa_mb : 1
I_nmda_bn = g_nmda_bn*(vm - E_nmda)*s_nmda_bn*(1.0/(1 + exp(-gamma*vm)*(1.0/3.57))) : amp
I_ampa_bn = g_ampa_bn*(vm - E_ampa)*s_ampa_bn : amp
s_nmda_bn : 1
s_ampa_bn : 1
''')
# Brette-Gerstner
basket_eqs = Brette_Gerstner(Cm_b, gl_b, El_b, v_th_b, DeltaT_b, tauw = 100 * ms, a = .1 * nS)
basket_eqs += IonicCurrent('I = I_syn_b : amp')
basket_eqs += eq_soma_b
basket = NeuronGroup(N_basket, model = basket_eqs, threshold = 'vm > v_th_b',
reset = AdaptiveReset(Vr=v_reset_b, b = 0.0205*nA),
refractory = 2 * ms, compile = True)
# Initialization of membrane potential
basket.vm = El_b
basket_cl = {}
for bb in xrange(N_cl):
basket_cl[bb] = basket.subgroup(1)
#=======================================================================================================================
#=======================================================================================================================
# MOSSY CELLS
# Parameters
gl_m = 4.53 * nS # leakage conductance
El_m = -64 * mV # reversal-resting potential
Cm_m = 0.2521 * nfarad # membrane capacitance
v_th_m = -42 * mV # threshold potential
v_reset_m = -49 * mV # reset potential
DeltaT_m = 2 * mV # slope factor
# Synaptic Parameters
gamma = 0.072 * mV**-1 # Mg Concentration factor
alpha_nmda = 0.5 * ms**-1 # NMDA scale factor
alpha_ampa = 1 * ms**-1 # AMPA scale factor
alpha_gaba = 1 * ms**-1 # GABA scale factor
#AMPA/NMDA Kinetics
t_nmda_decay_m = 100 * ms # NMDA decay time constant
t_nmda_rise_m = 4 * ms # NMDA rise time constant
t_ampa_decay_m = 6.2 * ms # AMPA decay time constant
t_ampa_rise_m = 0.5 * ms # AMPA rise time constant
# Noise model Parameters
g_nmda_mn = 4.465 * nS # NMDA maximum conductance
g_ampa_mn = 4.7 * nS # AMPA maximum conductance
t_nmda_decay_mn = 100 * ms # NMDA decay time constant
t_nmda_rise_mn = 4 * ms # NMDA rise time constant
t_ampa_decay_mn = 6.2 * ms # AMPA decay time constant
t_ampa_rise_mn = 0.5 * ms # AMPA rise time constant
# Synaptic current equations
eq_soma_m = Equations('''
I_syn_m = I_ampa_gm + I_nmda_gm + I_ampa_mn + I_nmda_mn : amp
I_nmda_gm = g_nmda_gm*(vm - E_nmda)*s_nmda_gm*(1.0/(1 + exp(-gamma*vm)*(1.0/3.57))) : amp
I_ampa_gm = g_ampa_gm*(vm - E_ampa)*s_ampa_gm : amp
s_nmda_gm : 1
s_ampa_gm : 1
I_nmda_mn = g_nmda_mn*(vm - E_nmda)*s_nmda_mn*(1.0/(1 + exp(-gamma*vm)*(1.0/3.57))) : amp
I_ampa_mn = g_ampa_mn*(vm - E_ampa)*s_ampa_mn : amp
s_nmda_mn : 1
s_ampa_mn : 1
''')
# Brette-Gerstner
mossy_eqs = Brette_Gerstner(Cm_m, gl_m, El_m, v_th_m, DeltaT_m, tauw = 180 * ms, a = 1 * nS)
mossy_eqs += IonicCurrent('I = I_syn_m : amp')
mossy_eqs += eq_soma_m
mossy = NeuronGroup(N_mossy, model = mossy_eqs, threshold = 'vm > v_th_m',
reset = AdaptiveReset(Vr=v_reset_m, b = 0.0829*nA),
refractory = 2 * ms, compile = True)
# Initialization of membrane potential
mossy.vm = El_m
#=======================================================================================================================
#=======================================================================================================================
# HIPP CELLS
# Parameters
gl_h = 1.930 * nS # leakage conductance
El_h = -59 * mV # reversal-resting potential
Cm_h = 0.0584 * nF # membrane capacitance
v_th_h = -50 * mV # threshold potential
v_reset_h = -56 * mV # reset potential
DeltaT_h = 2 * mV # slope factor
# Synaptic Parameters
gamma = 0.072 * mV**-1 # Mg Concentration factor
alpha_nmda = 0.5 * ms**-1 # NMDA scale factor
alpha_ampa = 1 * ms**-1 # AMPA scale factor
alpha_gaba = 1 * ms**-1 # GABA scale factor
#AMPA/NMDA Kinetics
t_nmda_decay_h = 110 * ms # NMDA decay time constant
t_nmda_rise_h = 4.8 * ms # NMDA rise time constant
t_ampa_decay_h = 11.0 * ms # AMPA decay time constant
t_ampa_rise_h = 2.0 * ms # AMPA rise time constant
# NOISE
g_nmda_hn = 0.2 * nS # NMDA maximum conductance
g_ampa_hn = 0.2 * nS # AMPA maximum conductance
t_nmda_decay_hn = 100 * ms # NMDA decay time constant
t_nmda_rise_hn = 5.0 * ms # NMDA rise time constant
t_ampa_decay_hn = 11.0 * ms # AMPA decay time constant
t_ampa_rise_hn = 2.0 * ms # AMPA rise time constant
# Synaptic current equations
eq_soma_h = Equations('''
I_syn_h = I_nmda_eh + I_ampa_eh + I_nmda_hn + I_ampa_hn : amp
I_nmda_eh = g_nmda_eh*(vm - E_nmda)*s_nmda_eh*1./(1 + exp(-gamma*vm)/3.57) : amp
I_ampa_eh = g_ampa_eh*(vm - E_ampa)*s_ampa_eh : amp
s_nmda_eh : 1
s_ampa_eh : 1
I_nmda_hn = g_nmda_hn*(vm - E_nmda)*s_nmda_hn*(1.0/(1 + exp(-gamma*vm)*(1.0/3.57))) : amp
I_ampa_hn = g_ampa_hn*(vm - E_ampa)*s_ampa_hn : amp
s_nmda_hn : 1
s_ampa_hn : 1
''')
# Brette-Gerstner
hipp_eqs = Brette_Gerstner(Cm_h, gl_h, El_h, v_th_h, DeltaT_h, tauw = 93 * ms, a = .82 * nS)
hipp_eqs += IonicCurrent('I = I_syn_h : amp')
hipp_eqs += eq_soma_h
hipp = NeuronGroup(N_hipp, model = hipp_eqs, threshold = EmpiricalThreshold(threshold = v_th_h,refractory = 3*ms),
reset = AdaptiveReset(Vr=v_reset_h, b = 0.015*nA), compile = True, freeze = True)
# Initialization of membrane potential
hipp.vm = El_h
#=======================================================================================================================
#=======================================================================================================================
# *************************************** C O N N E C T I O N S ********************************************
#=======================================================================================================================
os.chdir('ConnectivityMatrices')
os.chdir('scale_'+str(scale_fac))
# EC CELLS ----> GRANULE CELLS
a = 3.5
# Synapses at 1st dendrite
nmda_eqs_eg = '''
dj_eg/dt = -j_eg / t_nmda_decay_g + alpha_nmda_g * x_eg * (1 - j_eg) : 1
dx_eg/dt = -x_eg / t_nmda_rise_g : 1
wNMDA_eg : 1
'''
synNMDA_eg = Synapses(Input_ec, granule, model = nmda_eqs_eg, pre = 'x_eg += wNMDA_eg', implicit=True, freeze=True)
granule.s_nmda_eg = synNMDA_eg.j_eg
synNMDA_eg.load_connectivity('syn_eg.txt')
synNMDA_eg.wNMDA_eg[:, :] = 1.0 * a
synNMDA_eg.delay[:, :] = 3 * ms
ampa_eqs_eg = '''
dy_eg/dt = -y_eg / t_ampa_decay_g + alpha_ampa * h_eg * (1 - y_eg) : 1
dh_eg/dt = -h_eg / t_ampa_rise_g : 1
wAMPA_eg : 1
'''
synAMPA_eg = Synapses(Input_ec, granule, model = ampa_eqs_eg, pre = 'h_eg += wAMPA_eg', implicit=True, freeze=True)
granule.s_ampa_eg = synAMPA_eg.y_eg
synAMPA_eg.load_connectivity('syn_eg.txt')
synAMPA_eg.wAMPA_eg[:, :] = 1.0 * a
synAMPA_eg.delay[:, :] = 3 * ms
# EC CELLS ---> HIPP CELLS
# The NMDA/AMPA synapses @ hipp cell
nmda_eqs_eh = '''
dj_eh/dt = -j_eh / t_nmda_decay_h + alpha_nmda * x_eh * (1 - j_eh) : 1
dx_eh/dt = -x_eh / t_nmda_rise_h : 1
wNMDA_eh : 1
'''
synNMDA_eh = Synapses(Input_ec, hipp, model = nmda_eqs_eh, pre = 'x_eh += wNMDA_eh', implicit=True, freeze=True)
hipp.s_nmda_eh = synNMDA_eh.j_eh
synNMDA_eh.load_connectivity('syn_eh.txt')
synNMDA_eh.wNMDA_eh[:, :] = 1.0
synNMDA_eh.delay[:, :] = 3.0 * ms
ampa_eqs_eh = '''
dy_eh/dt = -y_eh / t_ampa_decay_h + h_eh*alpha_ampa*(1 - y_eh) : 1
dh_eh/dt = -h_eh / t_ampa_rise_h : 1
wAMPA_eh : 1
'''
synAMPA_eh = Synapses(Input_ec, hipp, model = ampa_eqs_eh, pre = 'h_eh += wAMPA_eh', implicit=True, freeze=True)
hipp.s_ampa_eh = synAMPA_eh.y_eh
synAMPA_eh.load_connectivity('syn_eh.txt')
synAMPA_eh.wAMPA_eh[:, :] = 1.0
synAMPA_eh.delay[:, :] = 3.0 * ms
# GRANULE CELLS ---> MOSSY CELLS
# The NMDA/AMPA synapses @ mossy cell
nmda_eqs_gm = '''
dj_gm/dt = -j_gm / t_nmda_decay_m + alpha_nmda * x_gm * (1 - j_gm) : 1
dx_gm/dt = -x_gm / t_nmda_rise_m : 1
wNMDA_gm : 1
'''
synNMDA_gm = Synapses(granule, mossy, model = nmda_eqs_gm, pre = 'x_gm += wNMDA_gm', implicit=True, freeze=True)
mossy.s_nmda_gm = synNMDA_gm.j_gm
synNMDA_gm.load_connectivity('syn_gm.txt')
synNMDA_gm.wNMDA_gm[:, :] = 1.0
synNMDA_gm.delay[:, :] = 1.5 * ms
ampa_eqs_gm = '''
dy_gm/dt = -y_gm / t_ampa_decay_m + h_gm*alpha_ampa*(1 - y_gm) : 1
dh_gm/dt = -h_gm / t_ampa_rise_m : 1
wAMPA_gm : 1
'''
synAMPA_gm = Synapses(granule, mossy, model = ampa_eqs_gm, pre = 'h_gm += wAMPA_gm', implicit=True, freeze=True)
mossy.s_ampa_gm = synAMPA_gm.y_gm
synAMPA_gm.load_connectivity('syn_gm.txt')
synAMPA_gm.wAMPA_gm[:, :] = 1.0
synAMPA_gm.delay[:, :] = 1.5 * ms
# GRANULE CELLS ---> BASKET CELLS
# The NMDA/AMPA synapses @ basket cell
synNMDA_gb = {}
synAMPA_gb = {}
for gtob in xrange(N_cl):
nmda_eqs_gb = '''
dj_gb/dt = -j_gb / t_nmda_decay_b + alpha_nmda * x_gb * (1 - j_gb) : 1
dx_gb/dt = -x_gb / t_nmda_rise_b : 1
wNMDA_gb : 1
'''
synNMDA_gb[gtob] = Synapses(granule_cl[gtob], basket_cl[gtob], model = nmda_eqs_gb, pre = 'x_gb += wNMDA_gb', implicit=True, freeze=True)
basket_cl[gtob].s_nmda_gb = synNMDA_gb[gtob].j_gb
synNMDA_gb[gtob].connect_random(granule_cl[gtob], basket_cl[gtob], sparseness = 1.0)
synNMDA_gb[gtob].wNMDA_gb[:, :] = 1.0
synNMDA_gb[gtob].delay[:, :] = 0.8 * ms
ampa_eqs_gb = '''
dy_gb/dt = -y_gb / t_ampa_decay_b + h_gb*alpha_ampa*(1 - y_gb) : 1
dh_gb/dt = -h_gb / t_ampa_rise_b : 1
wAMPA_gb : 1
'''
synAMPA_gb[gtob] = Synapses(granule_cl[gtob], basket_cl[gtob], model = ampa_eqs_gb, pre = 'h_gb += wAMPA_gb', implicit=True, freeze=True)
basket_cl[gtob].s_ampa_gb = synAMPA_gb[gtob].y_gb
synAMPA_gb[gtob].connect_random(granule_cl[gtob], basket_cl[gtob], sparseness = 1.0)
synAMPA_gb[gtob].wAMPA_gb[:, :] = 1.0
synAMPA_gb[gtob].delay[:, :] = 0.8 * ms
# MOSSY CELLS ---> GRANULE CELLS
# The NMDA/AMPA synapses @ granule proximal dendrite (dendrite 2)
# 1st branch
nmda_eqs_mg = '''
dj_mg/dt = -j_mg / t_nmda_decay_g + alpha_nmda_g * x_mg * (1 - j_mg) : 1
dx_mg/dt = -x_mg / t_nmda_rise_g : 1
wNMDA_mg : 1
'''
synNMDA_mg = Synapses(mossy, granule, model = nmda_eqs_mg, pre = 'x_mg += wNMDA_mg', implicit=True, freeze=True)
granule.s_nmda_mg = synNMDA_mg.j_mg
synNMDA_mg.load_connectivity('syn_mg.txt')
synNMDA_mg.wNMDA_mg[:, :] = 1.0
synNMDA_mg.delay[:, :] = 3.0 * ms
ampa_eqs_mg = '''
dy_mg/dt = -y_mg / t_ampa_decay_g + h_mg * alpha_ampa * (1 - y_mg) : 1
dh_mg/dt = -h_mg / t_ampa_rise_g : 1
wAMPA_mg : 1
'''
synAMPA_mg = Synapses(mossy, granule, model = ampa_eqs_mg, pre = 'h_mg += wAMPA_mg', implicit=True, freeze=True)
granule.s_ampa_mg = synAMPA_mg.y_mg
synAMPA_mg.load_connectivity('syn_mg.txt')
synAMPA_mg.wAMPA_mg[:, :] = 1.0
synAMPA_mg.delay[:, :] = 3.0 * ms
# MOSSY CELL ---> BASKET CELLS
# The NMDA/AMPA synapses @ basket cell
nmda_eqs_mb = '''
dj_mb/dt = -j_mb / t_nmda_decay_b + alpha_nmda * x_mb * (1 - j_mb) : 1
dx_mb/dt = -x_mb / t_nmda_rise_b : 1
wNMDA_mb : 1
'''
synNMDA_mb = Synapses(mossy, basket, model = nmda_eqs_mb, pre = 'x_mb += wNMDA_mb', implicit=True, freeze=True)
basket.s_nmda_mb = synNMDA_mb.j_mb
synNMDA_mb.connect_random(mossy, basket, sparseness = 1.0)
synNMDA_mb.wNMDA_mb[:, :] = 1.0
synNMDA_mb.delay[:, :] = 3.0 * ms
ampa_eqs_mb = '''
dy_mb/dt = -y_mb / t_ampa_decay_b + h_mb*alpha_ampa*(1 - y_mb) : 1
dh_mb/dt = -h_mb / t_ampa_rise_b : 1
wAMPA_mb : 1
'''
synAMPA_mb = Synapses(mossy, basket, model = ampa_eqs_mb, pre = 'h_mb += wAMPA_mb', implicit=True, freeze=True)
basket.s_ampa_mb = synAMPA_mb.y_mb
synAMPA_mb.connect_random(mossy, basket, sparseness = 1.0)
synAMPA_mb.wAMPA_mb[:, :] = 1.0
synAMPA_mb.delay[:, :] = 3.0 * ms
# BASKET CELLS ----> GRANULE CELLS (INHIBITION @ soma)
# Synapses @ granule cell (soma)
syn_bg = {}
for btog in xrange(N_cl):
gaba_eqs_bg = '''
dz_bg/dt = -z_bg / t_gaba_decay_g + r_bg*alpha_gaba*(1 - z_bg) : 1
dr_bg/dt = -r_bg / t_gaba_rise_g : 1
w_bg : 1
'''
syn_bg[btog] = Synapses(basket_cl[btog], granule_cl[btog], model = gaba_eqs_bg, pre = 'r_bg += w_bg', implicit=True, freeze=True)
granule_cl[btog].s_gaba_bg = syn_bg[btog].z_bg
syn_bg[btog].connect_random(basket_cl[btog], granule_cl[btog], sparseness = 1.0)
syn_bg[btog].w_bg[:, :] = 1.0
syn_bg[btog].delay[:, :] = 0.85 * ms
# HIPP CELLS ----> GRANULE CELLS (INHIBITION @ distal dendrite)
# Synapses at granule cell distal dendrite (0)
# Synapses @ 1st branch
gaba_eqs_hg = '''
dz_hg/dt = -z_hg / t_gaba_decay_g + alpha_gaba * r_hg * (1 - z_hg) : 1
dr_hg/dt = -r_hg / t_gaba_rise_g : 1
w_hg : 1
'''
syn_hg = Synapses(hipp, granule, model = gaba_eqs_hg, pre = 'r_hg += w_hg', implicit=True, freeze=True)
granule.s_gaba_hg = syn_hg.z_hg
syn_hg.load_connectivity('syn_hg.txt')
syn_hg.w_hg[:, :] = 1.0
syn_hg.delay[:, :] = 1.6 * ms
############################################# N O I S E ################################################################
# GRANULE CELLS
noise_g = PoissonGroup(40, 2.2*Hz)
# DISTAL
# Synapses at dend00
nmda_eqs_gn = '''
dj_gn/dt = -j_gn / t_nmda_decay_g + alpha_nmda_g * x_gn * (1 - j_gn) : 1
dx_gn/dt = -x_gn / t_nmda_rise_g : 1
dy_gn/dt = -y_gn / t_ampa_decay_g + alpha_ampa * h_gn * (1 - y_gn) : 1
dh_gn/dt = -h_gn / t_ampa_rise_g : 1
w_gn : 1
'''
syn_gn = Synapses(noise_g, granule, model = nmda_eqs_gn,
pre = 'x_gn = w_gn; h_gn = w_gn', implicit=True, freeze=True)
granule.s_nmda_gn = syn_gn.j_gn
granule.s_ampa_gn = syn_gn.y_gn
syn_gn.connect_random(noise_g, granule, sparseness = 1.0)
syn_gn.w_gn[:, :] = 1.0
syn_gn.delay[:, :] = '10 * rand() * ms'
# BASKET CELLS
noise_b = PoissonGroup(20*N_basket, 3*Hz)
noise_b_cl = {}
for no in xrange(N_basket):
noise_b_cl[no] = noise_b.subgroup(20)
# Synapses at basket cell (noise role)
syn_bn = {}
for cell0 in xrange(N_basket):
nmda_eqs_bn = '''
dj_bn/dt = -j_bn / t_nmda_decay_bn + alpha_nmda * x_bn * (1 - j_bn) : 1
dx_bn/dt = -x_bn / t_nmda_rise_bn : 1
dy_bn/dt = -y_bn / t_ampa_decay_bn + alpha_ampa * h_bn * (1 - y_bn) : 1
dh_bn/dt = -h_bn / t_ampa_rise_bn : 1
w_bn : 1
'''
syn_bn[cell0] = Synapses(noise_b_cl[cell0], basket_cl[cell0], model = nmda_eqs_bn,
pre = 'x_bn = w_bn; h_bn = w_bn')
basket_cl[cell0].s_nmda_bn = syn_bn[cell0].j_bn
basket_cl[cell0].s_ampa_bn = syn_bn[cell0].y_bn
syn_bn[cell0].connect_random(noise_b_cl[cell0], basket_cl[cell0], sparseness = 1.0)
syn_bn[cell0].w_bn[:, :] = 1.0
syn_bn[cell0].delay[:, :] = '10 * rand() * ms'
# MOSSY CELLS
noise = PoissonGroup(30*N_mossy, 3.8*Hz)
noise_cl = {}
mossy_cl = {}
for no in xrange(N_mossy):
noise_cl[no] = noise.subgroup(20)
mossy_cl[no] = mossy[no]
# Synapses at mossy cell (noise role)
syn_mn = {}
for kk in xrange(N_mossy):
nmda_eqs_mn = '''
dj_mn/dt = -j_mn / t_nmda_decay_mn + alpha_nmda * x_mn * (1 - j_mn) : 1
dx_mn/dt = -x_mn / t_nmda_rise_mn : 1
dy_mn/dt = -y_mn / t_ampa_decay_mn + alpha_ampa * h_mn * (1 - y_mn) : 1
dh_mn/dt = -h_mn / t_ampa_rise_mn : 1
w_mn : 1
'''
syn_mn[kk] = Synapses(noise_cl[kk], mossy_cl[kk], model = nmda_eqs_mn,
pre = 'x_mn = w_mn; h_mn = w_mn')
mossy_cl[kk].s_nmda_mn = syn_mn[kk].j_mn
mossy_cl[kk].s_ampa_mn = syn_mn[kk].y_mn
syn_mn[kk].connect_random(noise_cl[kk], mossy_cl[kk], sparseness = 1.0)
syn_mn[kk].w_mn[:, :] = 1.0
syn_mn[kk].delay[:, :] = '10 * rand() * ms'
# HIPP Cells
noise_h = PoissonGroup(20*N_hipp, 3*Hz)
noise_h_cl = {}
hipp_cl = {}
for no in xrange(N_hipp):
noise_h_cl[no] = noise_h.subgroup(20)
hipp_cl[no] = hipp[no]
# Synapses at hipp cell (noise role)
syn_hn = {}
for cell2 in xrange(N_hipp):
nmda_eqs_hn = '''
dj_hn/dt = -j_hn / t_nmda_decay_hn + alpha_nmda * x_hn * (1 - j_hn) : 1
dx_hn/dt = -x_hn / t_nmda_rise_hn : 1
dy_hn/dt = -y_hn / t_ampa_decay_hn + alpha_ampa * h_hn * (1 - y_hn) : 1
dh_hn/dt = -h_hn / t_ampa_rise_hn : 1
w_hn : 1
'''
syn_hn[cell2] = Synapses(noise_h_cl[cell2], hipp_cl[cell2], model = nmda_eqs_hn,
pre = 'x_hn = w_hn; h_hn = w_hn')
hipp_cl[cell2].s_nmda_hn = syn_hn[cell2].j_hn
hipp_cl[cell2].s_ampa_hn = syn_hn[cell2].y_hn
syn_hn[cell2].connect_random(noise_h_cl[cell2], hipp_cl[cell2], sparseness = 1.0)
syn_hn[cell2].w_hn[:, :] = 1.0
syn_hn[cell2].delay[:, :] = '10 * rand() * ms'
#=======================================================================================================================
#=======================================================================================================================
# MONITORING
I_S = SpikeMonitor(Input_ec)
G_S = SpikeMonitor(granule)
#=======================================================================================================================
#=======================================================================================================================
# *************************************** S I M U L A T I O N S ********************************************
#=======================================================================================================================
#Simulation run
start_timestamp = time.time()
run(t1+simtime+t2, report='text', report_period = 10 *second)
sim_duration = time.time() - start_timestamp
print "\nDuration of simulation: " + str(sim_duration)
if not os.path.exists(maindir+'/results/'):
os.makedirs(maindir+'/results/')
if not os.path.exists(maindir+'/results/Control'):
os.makedirs(maindir+'/results/Control')
os.chdir(maindir+'/results/Control')
output_pattern = []
for spikes in xrange(N_granule):
output_pattern.append(len(G_S[spikes]))
np.save('output_pattern0d_'+overlap+'_'+str(trial_i[0])+'_'+str(trial), output_pattern)
input_pattern = []
for spikes_i in xrange(len(Input_ec)):
input_pattern.append(len(I_S[spikes_i]))
np.save('input_pattern0d_'+overlap+'_'+str(trial_i[0])+'_'+str(trial), input_pattern)