-
Notifications
You must be signed in to change notification settings - Fork 0
/
core_simulator.py
394 lines (333 loc) · 11.4 KB
/
core_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
'''
Naming convention followed across the simulator is:
- BigBoard = big_boards[0] + big_boards[1]
- big_board[i] = small_boards[0] + small_boards[1] + small_boards[2] + .... + small_boards[7] + small_boards[8]
- small_board[i] = cell[0] + cell[1] + cell[2] + .... + cell[7] + cell[8]
'''
import sys
import random
import signal
import time
import copy
import traceback
TIME = 24
MAX_PTS = 86
class TimedOutExc(Exception):
pass
def handler(signum, frame):
#print 'Signal handler called with signal', signum
raise TimedOutExc()
class Random_Player():
def __init__(self):
pass
def move(self, board, old_move, flag):
#You have to implement the move function with the same signature as this
#Find the list of valid cells allowed
cells = board.find_valid_move_cells(old_move)
return cells[random.randrange(len(cells))]
class Manual_Player:
def __init__(self):
pass
def move(self, board, old_move, flag):
# print(old_move)
# print(flag)
print 'Enter your move: <format:board row column> (you\'re playing with', flag + ")"
mvp = raw_input()
mvp = mvp.split()
return (int(mvp[0]), int(mvp[1]), int(mvp[2]))
class BigBoard:
def __init__(self):
# big_boards_status is the game board
# small_boards_status shows which small_boards have been won/drawn and by which player
self.big_boards_status = ([['-' for i in range(9)] for j in range(9)], [['-' for i in range(9)] for j in range(9)])
self.small_boards_status = ([['-' for i in range(3)] for j in range(3)], [['-' for i in range(3)] for j in range(3)])
def print_board(self):
# for printing the state of the board
print '================BigBoard State================'
for i in range(9):
if i%3 == 0:
print
for k in range(2):
for j in range(9):
if j%3 == 0:
print "",
print self.big_boards_status[k][i][j],
if k==0:
print " ",
print
print
print '==============SmallBoards States=============='
for i in range(3):
for k in range(2):
for j in range(3):
print self.small_boards_status[k][i][j],
if k==0:
print " ",
print
print '=============================================='
print
print
def find_valid_move_cells(self, old_move):
#returns the valid cells allowed given the last move and the current board state
allowed_cells = []
allowed_small_board = [old_move[1]%3, old_move[2]%3]
#checks if the move is a free move or not based on the rules
if old_move == (-1,-1,-1) or (self.small_boards_status[0][allowed_small_board[0]][allowed_small_board[1]] != '-' and self.small_boards_status[1][allowed_small_board[0]][allowed_small_board[1]] != '-'):
# For open move
for k in range(2):
for i in range(9):
for j in range(9):
if self.big_boards_status[k][i][j] == '-' and self.small_boards_status[k][i/3][j/3] == '-':
allowed_cells.append((k,i,j))
else:
# Normal moves
for k in range(2):
if self.small_boards_status[k][allowed_small_board[0]][allowed_small_board[1]] == "-":
for i in range(3*allowed_small_board[0], 3*allowed_small_board[0]+3):
for j in range(3*allowed_small_board[1], 3*allowed_small_board[1]+3):
if self.big_boards_status[k][i][j] == '-':
allowed_cells.append((k,i,j))
return allowed_cells
def find_terminal_state(self):
#checks if the game is over(won or drawn) and returns the player who have won the game or the player who has higher small_boards in case of a draw
cntx = 0
cnto = 0
cntd = 0
for k in range(2):
bs = self.small_boards_status[k]
for i in range(3):
for j in range(3):
if bs[i][j] == 'x':
cntx += 1
if bs[i][j] == 'o':
cnto += 1
if bs[i][j] == 'd':
cntd += 1
for i in range(3):
row = bs[i]
col = [x[i] for x in bs]
#print row,col
#checking if i'th row or i'th column has been won or not
if (row[0] =='x' or row[0] == 'o') and (row.count(row[0]) == 3):
return (row[0],'WON')
if (col[0] =='x' or col[0] == 'o') and (col.count(col[0]) == 3):
return (col[0],'WON')
#check diagonals
if(bs[0][0] == bs[1][1] == bs[2][2]) and (bs[0][0] == 'x' or bs[0][0] == 'o'):
return (bs[0][0],'WON')
if(bs[0][2] == bs[1][1] == bs[2][0]) and (bs[0][2] == 'x' or bs[0][2] == 'o'):
return (bs[0][2],'WON')
if cntx+cnto+cntd < 18: #if all small_boards have not yet been won, continue
return ('CONTINUE', '-')
elif cntx+cnto+cntd == 18: #if game is drawn
return ('NONE', 'DRAW')
def check_valid_move(self, old_move, new_move):
#checks if a move is valid or not given the last move
if (len(old_move) != 3) or (len(new_move) != 3):
return False
for i in range(3):
if (type(old_move[i]) is not int) or (type(new_move[i]) is not int):
return False
if (old_move != (-1,-1,-1)) and (old_move[0] < 0 or old_move[0] > 1 or old_move[1] < 0 or old_move[1] > 8 or old_move[2] < 0 or old_move[2] > 8):
return False
cells = self.find_valid_move_cells(old_move)
return new_move in cells
def update(self, old_move, new_move, ply):
#updating the game board and small_board status as per the move that has been passed in the arguements
if(self.check_valid_move(old_move, new_move)) == False:
return 'UNSUCCESSFUL', False
self.big_boards_status[new_move[0]][new_move[1]][new_move[2]] = ply
x = new_move[1]/3
y = new_move[2]/3
k = new_move[0]
fl = 0
#checking if a small_board has been won or drawn or not after the current move
bs = self.big_boards_status[k]
for i in range(3):
#checking for horizontal pattern(i'th row)
if (bs[3*x+i][3*y] == bs[3*x+i][3*y+1] == bs[3*x+i][3*y+2]) and (bs[3*x+i][3*y] == ply):
self.small_boards_status[k][x][y] = ply
return 'SUCCESSFUL', True
#checking for vertical pattern(i'th column)
if (bs[3*x][3*y+i] == bs[3*x+1][3*y+i] == bs[3*x+2][3*y+i]) and (bs[3*x][3*y+i] == ply):
self.small_boards_status[k][x][y] = ply
return 'SUCCESSFUL', True
#checking for diagonal patterns
#diagonal 1
if (bs[3*x][3*y] == bs[3*x+1][3*y+1] == bs[3*x+2][3*y+2]) and (bs[3*x][3*y] == ply):
self.small_boards_status[k][x][y] = ply
return 'SUCCESSFUL', True
#diagonal 2
if (bs[3*x][3*y+2] == bs[3*x+1][3*y+1] == bs[3*x+2][3*y]) and (bs[3*x][3*y+2] == ply):
self.small_boards_status[k][x][y] = ply
return 'SUCCESSFUL', True
#checking if a small_board has any more cells left or has it been drawn
for i in range(3):
for j in range(3):
if bs[3*x+i][3*y+j] =='-':
return 'SUCCESSFUL', False
self.small_boards_status[k][x][y] = 'd'
return 'SUCCESSFUL', False
def player_turn(game_board, old_move, obj, ply, opp, flg):
temp_big_boards_status = copy.deepcopy(game_board.big_boards_status)
temp_small_boards_status = copy.deepcopy(game_board.small_boards_status)
signal.alarm(TIME)
WINNER = ''
MESSAGE = ''
pts = {"P1" : 0, "P2" : 0}
to_break = False
p_move = ''
try: #try to get player 1's move
p_move = obj.move(game_board, old_move, flg)
except TimedOutExc: #timeout error
# print e
WINNER = opp
MESSAGE = 'TIME OUT'
pts[opp] = MAX_PTS
return p_move, WINNER, MESSAGE, pts["P1"], pts["P2"], True, False
except Exception as e:
WINNER = opp
MESSAGE = "THREW AN EXCEPTION"
traceback.print_exc()
pts[opp] = MAX_PTS
return p_move, WINNER, MESSAGE, pts["P1"], pts["P2"], True, False
signal.alarm(0)
#check if board is not modified and move returned is valid
if (game_board.small_boards_status != temp_small_boards_status) or (game_board.big_boards_status != temp_big_boards_status):
WINNER = opp
MESSAGE = 'MODIFIED THE BOARD'
pts[opp] = MAX_PTS
return p_move, WINNER, MESSAGE, pts["P1"], pts["P2"], True, False
update_status, small_board_won = game_board.update(old_move, p_move, flg)
if update_status == 'UNSUCCESSFUL':
WINNER = opp
MESSAGE = 'INVALID MOVE'
pts[opp] = MAX_PTS
return p_move, WINNER, MESSAGE, pts["P1"], pts["P2"], True, False
status = game_board.find_terminal_state() #find if the game has ended and if yes, find the winner
# print status
if status[1] == 'WON': #if the game has ended after a player1 move, player 1 would win
pts[ply] = MAX_PTS
WINNER = ply
MESSAGE = 'WON'
return p_move, WINNER, MESSAGE, pts["P1"], pts["P2"], True, False
elif status[1] == 'DRAW': #in case of a draw, each player gets points equal to the number of small_boards won
WINNER = 'NONE'
MESSAGE = 'DRAW'
return p_move, WINNER, MESSAGE, pts["P1"], pts["P2"], True, False
return p_move, WINNER, MESSAGE, pts["P1"], pts["P2"], False, small_board_won
def gameplay(obj1, obj2): #game simulator
game_board = BigBoard()
fl1 = 'x'
fl2 = 'o'
old_move = (-1,-1,-1)
WINNER = ''
MESSAGE = ''
pts1 = 0
pts2 = 0
# game_board.print_board()
signal.signal(signal.SIGALRM, handler)
while(1):
#player 1 turn
p1_move, WINNER, MESSAGE, pts1, pts2, to_break, small_board_won = player_turn(game_board, old_move, obj1, "P1", "P2", fl1)
if to_break:
break
old_move = p1_move
# game_board.print_board()
if small_board_won:
p1_move, WINNER, MESSAGE, pts1, pts2, to_break, small_board_won = player_turn(game_board, old_move, obj1, "P1", "P2", fl1)
if to_break:
break
old_move = p1_move
# game_board.print_board()
#do the same thing for player 2
p2_move, WINNER, MESSAGE, pts1, pts2, to_break, small_board_won = player_turn(game_board, old_move, obj2, "P2", "P1", fl2)
if to_break:
break
# game_board.print_board()
old_move = p2_move
if small_board_won:
p2_move, WINNER, MESSAGE, pts1, pts2, to_break, small_board_won = player_turn(game_board, old_move, obj2, "P2", "P1", fl2)
if to_break:
break
old_move = p2_move
# game_board.print_board()
# game_board.print_board()
print "Winner:", WINNER
# print "Message", MESSAGE
x = 0
d = 0
o = 0
for k in range(2):
for i in range(3):
for j in range(3):
if game_board.small_boards_status[k][i][j] == 'x':
x += 1
if game_board.small_boards_status[k][i][j] == 'o':
o += 1
if game_board.small_boards_status[k][i][j] == 'd':
d += 1
print 'x:', x, ' o:',o,' d:',d
if MESSAGE == 'DRAW':
for k in range(2):
for i in range(3):
for j in range(3):
val = 6
if is_corner(i,j):
val = 4
elif is_centre(i,j):
val = 3
if game_board.small_boards_status[k][i][j] == 'x':
pts1 += val
if game_board.small_boards_status[k][i][j] == 'o':
pts2 += val
return (pts1,pts2)
def is_centre(row, col):
if row == 1 and col == 1:
return 1
return 0
def is_corner(row, col):
if row == 0 and col == 0:
return 1
if row == 0 and col == 2:
return 1
if row == 2 and col == 0:
return 1
if row == 2 and col == 2:
return 1
return 0
if __name__ == '__main__':
if len(sys.argv) != 2:
print 'Usage: python simulator.py <option>'
print '<option> can be 1 => Random player vs. Random player'
print ' 2 => Human vs. Random Player'
print ' 3 => Human vs. Human'
print ' 4 => Random vs. Bot'
print ' 5 => Bot vs. Bot'
sys.exit(1)
obj1 = ''
obj2 = ''
option = sys.argv[1]
if option == '1':
obj1 = Random_Player()
obj2 = Random_Player()
elif option == '2':
obj1 = Random_Player()
obj2 = Manual_Player()
elif option == '3':
obj1 = Manual_Player()
obj2 = Manual_Player()
elif option == '4':
from bot import *
obj1 = Random_Player()
obj2 = Bot()
elif option == '5':
from bot import *
obj1 = Bot()
obj2 = Bot()
else:
print 'Invalid option'
sys.exit(1)
x = gameplay(obj1, obj2)
print "Player 1 points:", x[0]
print "Player 2 points:", x[1]