实现一个函数,检查一棵二叉树是否为二叉搜索树。
示例 1:输入:示例 2:
2
/ \
1 3
输出: true
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
一棵合法的二叉搜索树,其中序遍历的结果应该升序排列。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
res, t = True, None
def isValidBST(self, root: TreeNode) -> bool:
self.isValid(root)
return self.res
def isValid(self, root):
if not root:
return
self.isValid(root.left)
if self.t is None or self.t < root.val:
self.t = root.val
else:
self.res = False
return
self.isValid(root.right)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private boolean res = true;
private Integer t = null;
public boolean isValidBST(TreeNode root) {
isValid(root);
return res;
}
private void isValid(TreeNode root) {
if (root == null) {
return;
}
isValid(root.left);
if (t == null || t < root.val) {
t = root.val;
} else {
res = false;
return;
}
isValid(root.right);
}
}
- 非递归中序遍历
func isValidBST(root *TreeNode) bool {
stack := make([]*TreeNode, 0)
var prev *TreeNode = nil
node := root
for len(stack) > 0 || node != nil {
for node != nil {
stack = append(stack, node)
node = node.Left
}
node = stack[len(stack)-1]
stack = stack[:len(stack)-1]
if prev == nil || node.Val > prev.Val {
prev = node
} else {
return false
}
node = node.Right
}
return true
}
- 利用上界下界判定
func isValidBST(root *TreeNode) bool {
return check(root, math.MinInt64, math.MaxInt64)
}
func check(node *TreeNode, lower, upper int) bool {
if node == nil {
return true
}
if node.Val <= lower || node.Val >= upper {
return false
}
return check(node.Left, lower, node.Val) && check(node.Right, node.Val, upper)
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode* pre = nullptr;
TreeNode* cur = root;
stack<TreeNode*> stk;
while (cur || !stk.empty()) {
if (cur) {
stk.push(cur);
cur = cur->left;
} else {
cur = stk.top();
stk.pop();
if (pre && pre->val >= cur->val) {
return false;
}
pre = cur;
cur = cur->right;
}
}
return true;
}
};
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isValidBST(root: TreeNode | null): boolean {
let pre = -Infinity;
const dfs = (root: TreeNode | null) => {
if (root == null) {
return true;
}
const { val, left, right } = root;
if (!dfs(left) || val <= pre) {
return false;
}
pre = val;
return dfs(right);
};
return dfs(root);
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isValidBST(root: TreeNode | null): boolean {
if (root == null) {
return true;
}
const { val, left, right } = root;
const dfs = (root: TreeNode | null, min: number, max: number) => {
if (root == null) {
return true;
}
const { val, left, right } = root;
if (val <= min || val >= max) {
return false;
}
return (
dfs(left, min, Math.min(val, max)) &&
dfs(right, Math.max(val, min), max)
);
};
return dfs(left, -Infinity, val) && dfs(right, val, Infinity);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, pre: &mut Option<i32>) -> bool {
if root.is_none() {
return true;
}
let root = root.as_ref().unwrap().borrow();
if !Self::dfs(&root.left, pre) {
return false;
}
if pre.is_some() && pre.unwrap() >= root.val {
return false;
}
*pre = Some(root.val);
Self::dfs(&root.right, pre)
}
pub fn is_valid_bst(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
Self::dfs(&root, &mut None)
}
}