Skip to content

Latest commit

 

History

History
291 lines (255 loc) · 9.05 KB

File metadata and controls

291 lines (255 loc) · 9.05 KB

English Version

题目描述

给定一个二维平面及平面上的 N 个点列表Points,其中第i个点的坐标为Points[i]=[Xi,Yi]。请找出一条直线,其通过的点的数目最多。

设穿过最多点的直线所穿过的全部点编号从小到大排序的列表为S,你仅需返回[S[0],S[1]]作为答案,若有多条直线穿过了相同数量的点,则选择S[0]值较小的直线返回,S[0]相同则选择S[1]值较小的直线返回。

示例:

输入: [[0,0],[1,1],[1,0],[2,0]]
输出: [0,2]
解释: 所求直线穿过的3个点的编号为[0,2,3]

提示:

  • 2 <= len(Points) <= 300
  • len(Points[i]) = 2

解法

方法一:暴力枚举

我们可以枚举任意两个点 $(x_1, y_1), (x_2, y_2)$,把这两个点连成一条直线,那么此时这条直线上的点的个数就是 2,接下来我们再枚举其他点 $(x_3, y_3)$,判断它们是否在同一条直线上,如果在,那么直线上的点的个数就加 1,如果不在,那么直线上的点的个数不变。找出所有直线上的点的个数的最大值,其对应的最小的两个点的编号即为答案。

时间复杂度 $O(n^3)$,空间复杂度 $O(1)$。其中 $n$ 是数组 points 的长度。

方法二:枚举 + 哈希表

我们可以枚举一个点 $(x_1, y_1)$,把其他所有点 $(x_2, y_2)$$(x_1, y_1)$ 连成的直线的斜率存入哈希表中,斜率相同的点在同一条直线上,哈希表的键为斜率,值为直线上的点的个数。找出哈希表中的最大值,即为答案。为了避免精度问题,我们可以将斜率 $\frac{y_2 - y_1}{x_2 - x_1}$ 进行约分,约分的方法是求最大公约数,然后分子分母同时除以最大公约数,将求得的分子分母作为哈希表的键。

时间复杂度 $O(n^2 \times \log m)$,空间复杂度 $O(n)$。其中 $n$$m$ 分别是数组 points 的长度和数组 points 所有横纵坐标差的最大值。

相似题目:

Python3

class Solution:
    def bestLine(self, points: List[List[int]]) -> List[int]:
        n = len(points)
        mx = 0
        for i in range(n):
            x1, y1 = points[i]
            for j in range(i + 1, n):
                x2, y2 = points[j]
                cnt = 2
                for k in range(j + 1, n):
                    x3, y3 = points[k]
                    a = (y2 - y1) * (x3 - x1)
                    b = (y3 - y1) * (x2 - x1)
                    cnt += a == b
                if mx < cnt:
                    mx = cnt
                    x, y = i, j
        return [x, y]
class Solution:
    def bestLine(self, points: List[List[int]]) -> List[int]:
        def gcd(a, b):
            return a if b == 0 else gcd(b, a % b)

        n = len(points)
        mx = 0
        for i in range(n):
            x1, y1 = points[i]
            cnt = defaultdict(list)
            for j in range(i + 1, n):
                x2, y2 = points[j]
                dx, dy = x2 - x1, y2 - y1
                g = gcd(dx, dy)
                k = (dx // g, dy // g)
                cnt[k].append((i, j))
                if mx < len(cnt[k]) or (mx == len(cnt[k]) and (x, y) > cnt[k][0]):
                    mx = len(cnt[k])
                    x, y = cnt[k][0]
        return [x, y]

Java

class Solution {
    public int[] bestLine(int[][] points) {
        int n = points.length;
        int mx = 0;
        int[] ans = new int[2];
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int cnt = 2;
                for (int k = j + 1; k < n; ++k) {
                    int x3 = points[k][0], y3 = points[k][1];
                    int a = (y2 - y1) * (x3 - x1);
                    int b = (y3 - y1) * (x2 - x1);
                    if (a == b) {
                        ++cnt;
                    }
                }
                if (mx < cnt) {
                    mx = cnt;
                    ans[0] = i;
                    ans[1] = j;
                }
            }
        }
        return ans;
    }
}
class Solution {
    public int[] bestLine(int[][] points) {
        int n = points.length;
        int mx = 0;
        int[] ans = new int[2];
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            Map<String, List<int[]>> cnt = new HashMap<>();
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int dx = x2 - x1, dy = y2 - y1;
                int g = gcd(dx, dy);
                String key = (dx / g) + "." + (dy / g);
                cnt.computeIfAbsent(key, k -> new ArrayList<>()).add(new int[] {i, j});
                if (mx < cnt.get(key).size()
                    || (mx == cnt.get(key).size()
                        && (ans[0] > cnt.get(key).get(0)[0]
                            || (ans[0] == cnt.get(key).get(0)[0]
                                && ans[1] > cnt.get(key).get(0)[1])))) {
                    mx = cnt.get(key).size();
                    ans = cnt.get(key).get(0);
                }
            }
        }
        return ans;
    }

    private int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}

C++

class Solution {
public:
    vector<int> bestLine(vector<vector<int>>& points) {
        int n = points.size();
        int mx = 0;
        vector<int> ans(2);
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int cnt = 2;
                for (int k = j + 1; k < n; ++k) {
                    int x3 = points[k][0], y3 = points[k][1];
                    long a = (long) (y2 - y1) * (x3 - x1);
                    long b = (long) (y3 - y1) * (x2 - x1);
                    cnt += a == b;
                }
                if (mx < cnt) {
                    mx = cnt;
                    ans[0] = i;
                    ans[1] = j;
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    vector<int> bestLine(vector<vector<int>>& points) {
        int n = points.size();
        int mx = 0;
        pair<int, int> ans = {0, 0};
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            unordered_map<string, vector<pair<int, int>>> cnt;
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int dx = x2 - x1, dy = y2 - y1;
                int g = gcd(dx, dy);
                string k = to_string(dx / g) + "." + to_string(dy / g);
                cnt[k].push_back({i, j});
                if (mx < cnt[k].size() || (mx == cnt[k].size() && ans > cnt[k][0])) {
                    mx = cnt[k].size();
                    ans = cnt[k][0];
                }
            }
        }
        return vector<int>{ans.first, ans.second};
    }

    int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
};

Go

func bestLine(points [][]int) []int {
	n := len(points)
	ans := make([]int, 2)
	mx := 0
	for i := 0; i < n; i++ {
		x1, y1 := points[i][0], points[i][1]
		for j := i + 1; j < n; j++ {
			x2, y2 := points[j][0], points[j][1]
			cnt := 2
			for k := j + 1; k < n; k++ {
				x3, y3 := points[k][0], points[k][1]
				a := (y2 - y1) * (x3 - x1)
				b := (y3 - y1) * (x2 - x1)
				if a == b {
					cnt++
				}
			}
			if mx < cnt {
				mx = cnt
				ans[0], ans[1] = i, j
			}
		}
	}
	return ans
}
func bestLine(points [][]int) []int {
	n := len(points)
	ans := make([]int, 2)
	type pair struct{ i, j int }
	mx := 0
	for i := 0; i < n; i++ {
		x1, y1 := points[i][0], points[i][1]
		cnt := map[pair][]pair{}
		for j := i + 1; j < n; j++ {
			x2, y2 := points[j][0], points[j][1]
			dx, dy := x2-x1, y2-y1
			g := gcd(dx, dy)
			k := pair{dx / g, dy / g}
			cnt[k] = append(cnt[k], pair{i, j})
			if mx < len(cnt[k]) || (mx == len(cnt[k]) && (ans[0] > cnt[k][0].i || (ans[0] == cnt[k][0].i && ans[1] > cnt[k][0].j))) {
				mx = len(cnt[k])
				ans[0], ans[1] = cnt[k][0].i, cnt[k][0].j
			}
		}
	}
	return ans
}

func gcd(a, b int) int {
	if b == 0 {
		return a
	}
	return gcd(b, a%b)
}

...