Skip to content

Latest commit

 

History

History
191 lines (158 loc) · 4.06 KB

File metadata and controls

191 lines (158 loc) · 4.06 KB

中文文档

Description

Given an array of distinct integers nums and a target integer target, return the number of possible combinations that add up to target.

The test cases are generated so that the answer can fit in a 32-bit integer.

 

Example 1:

Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.

Example 2:

Input: nums = [9], target = 3
Output: 0

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • All the elements of nums are unique.
  • 1 <= target <= 1000

 

Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?

Solutions

Dynamic programming.

dp[i] represents the number of element combinations whose sum is i.

Python3

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        f = [1] + [0] * target
        for i in range(1, target + 1):
            for x in nums:
                if i >= x:
                    f[i] += f[i - x]
        return f[target]

Java

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] f = new int[target + 1];
        f[0] = 1;
        for (int i = 1; i <= target; ++i) {
            for (int x : nums) {
                if (i >= x) {
                    f[i] += f[i - x];
                }
            }
        }
        return f[target];
    }
}

C++

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        int f[target + 1];
        memset(f, 0, sizeof(f));
        f[0] = 1;
        for (int i = 1; i <= target; ++i) {
            for (int x : nums) {
                if (i >= x && f[i - x] < INT_MAX - f[i]) {
                    f[i] += f[i - x];
                }
            }
        }
        return f[target];
    }
};

Go

func combinationSum4(nums []int, target int) int {
	f := make([]int, target+1)
	f[0] = 1
	for i := 1; i <= target; i++ {
		for _, x := range nums {
			if i >= x {
				f[i] += f[i-x]
			}
		}
	}
	return f[target]
}

JavaScript

/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var combinationSum4 = function (nums, target) {
    const f = new Array(target + 1).fill(0);
    f[0] = 1;
    for (let i = 1; i <= target; ++i) {
        for (const x of nums) {
            if (i >= x) {
                f[i] += f[i - x];
            }
        }
    }
    return f[target];
};

TypeScript

function combinationSum4(nums: number[], target: number): number {
    const f: number[] = new Array(target + 1).fill(0);
    f[0] = 1;
    for (let i = 1; i <= target; ++i) {
        for (const x of nums) {
            if (i >= x) {
                f[i] += f[i - x];
            }
        }
    }
    return f[target];
}

C#

public class Solution {
    public int CombinationSum4(int[] nums, int target) {
        int[] f = new int[target + 1];
        f[0] = 1;
        for (int i = 1; i <= target; ++i) {
            foreach (int x in nums) {
                if (i >= x) {
                    f[i] += f[i - x];
                }
            }
        }
        return f[target];
    }
}

...