In the "100 game" two players take turns adding, to a running total, any integer from 1
to 10
. The player who first causes the running total to reach or exceed 100 wins.
What if we change the game so that players cannot re-use integers?
For example, two players might take turns drawing from a common pool of numbers from 1 to 15 without replacement until they reach a total >= 100.
Given two integers maxChoosableInteger
and desiredTotal
, return true
if the first player to move can force a win, otherwise, return false
. Assume both players play optimally.
Example 1:
Input: maxChoosableInteger = 10, desiredTotal = 11 Output: false Explanation: No matter which integer the first player choose, the first player will lose. The first player can choose an integer from 1 up to 10. If the first player choose 1, the second player can only choose integers from 2 up to 10. The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal. Same with other integers chosen by the first player, the second player will always win.
Example 2:
Input: maxChoosableInteger = 10, desiredTotal = 0 Output: true
Example 3:
Input: maxChoosableInteger = 10, desiredTotal = 1 Output: true
Constraints:
1 <= maxChoosableInteger <= 20
0 <= desiredTotal <= 300
class Solution:
def canIWin(self, maxChoosableInteger: int, desiredTotal: int) -> bool:
@cache
def dfs(state, t):
for i in range(1, maxChoosableInteger + 1):
if (state >> i) & 1:
continue
if t + i >= desiredTotal or not dfs(state | 1 << i, t + i):
return True
return False
s = (1 + maxChoosableInteger) * maxChoosableInteger // 2
if s < desiredTotal:
return False
return dfs(0, 0)
class Solution {
private Map<Integer, Boolean> memo = new HashMap<>();
public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
int s = (1 + maxChoosableInteger) * maxChoosableInteger / 2;
if (s < desiredTotal) {
return false;
}
return dfs(0, 0, maxChoosableInteger, desiredTotal);
}
private boolean dfs(int state, int t, int maxChoosableInteger, int desiredTotal) {
if (memo.containsKey(state)) {
return memo.get(state);
}
boolean res = false;
for (int i = 1; i <= maxChoosableInteger; ++i) {
if (((state >> i) & 1) == 0) {
if (t + i >= desiredTotal
|| !dfs(state | 1 << i, t + i, maxChoosableInteger, desiredTotal)) {
res = true;
break;
}
}
}
memo.put(state, res);
return res;
}
}
class Solution {
public:
bool canIWin(int maxChoosableInteger, int desiredTotal) {
int s = (1 + maxChoosableInteger) * maxChoosableInteger / 2;
if (s < desiredTotal) return false;
unordered_map<int, bool> memo;
return dfs(0, 0, maxChoosableInteger, desiredTotal, memo);
}
bool dfs(int state, int t, int maxChoosableInteger, int desiredTotal, unordered_map<int, bool>& memo) {
if (memo.count(state)) return memo[state];
bool res = false;
for (int i = 1; i <= maxChoosableInteger; ++i) {
if ((state >> i) & 1) continue;
if (t + i >= desiredTotal || !dfs(state | 1 << i, t + i, maxChoosableInteger, desiredTotal, memo)) {
res = true;
break;
}
}
memo[state] = res;
return res;
}
};
func canIWin(maxChoosableInteger int, desiredTotal int) bool {
s := (1 + maxChoosableInteger) * maxChoosableInteger / 2
if s < desiredTotal {
return false
}
memo := map[int]bool{}
var dfs func(int, int) bool
dfs = func(state, t int) bool {
if v, ok := memo[state]; ok {
return v
}
res := false
for i := 1; i <= maxChoosableInteger; i++ {
if (state>>i)&1 == 1 {
continue
}
if t+i >= desiredTotal || !dfs(state|1<<i, t+i) {
res = true
break
}
}
memo[state] = res
return res
}
return dfs(0, 0)
}