Skip to content

Latest commit

 

History

History
306 lines (272 loc) · 8.13 KB

File metadata and controls

306 lines (272 loc) · 8.13 KB

中文文档

Description

You are given a network of n nodes represented as an n x n adjacency matrix graph, where the ith node is directly connected to the jth node if graph[i][j] == 1.

Some nodes initial are initially infected by malware. Whenever two nodes are directly connected, and at least one of those two nodes is infected by malware, both nodes will be infected by malware. This spread of malware will continue until no more nodes can be infected in this manner.

Suppose M(initial) is the final number of nodes infected with malware in the entire network after the spread of malware stops.

We will remove exactly one node from initial, completely removing it and any connections from this node to any other node.

Return the node that, if removed, would minimize M(initial). If multiple nodes could be removed to minimize M(initial), return such a node with the smallest index.

 

Example 1:

Input: graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
Output: 0

Example 2:

Input: graph = [[1,1,0],[1,1,1],[0,1,1]], initial = [0,1]
Output: 1

Example 3:

Input: graph = [[1,1,0,0],[1,1,1,0],[0,1,1,1],[0,0,1,1]], initial = [0,1]
Output: 1

 

Constraints:

  • n == graph.length
  • n == graph[i].length
  • 2 <= n <= 300
  • graph[i][j] is 0 or 1.
  • graph[i][j] == graph[j][i]
  • graph[i][i] == 1
  • 1 <= initial.length < n
  • 0 <= initial[i] <= n - 1
  • All the integers in initial are unique.

Solutions

Python3

class Solution:
    def minMalwareSpread(self, graph: List[List[int]], initial: List[int]) -> int:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        def union(a, b):
            pa, pb = find(a), find(b)
            if pa != pb:
                size[pb] += size[pa]
                p[pa] = pb

        n = len(graph)
        p = list(range(n))
        size = [1] * n
        clean = [True] * n
        for i in initial:
            clean[i] = False
        for i in range(n):
            if not clean[i]:
                continue
            for j in range(i + 1, n):
                if clean[j] and graph[i][j] == 1:
                    union(i, j)
        cnt = Counter()
        mp = {}
        for i in initial:
            s = {find(j) for j in range(n) if clean[j] and graph[i][j] == 1}
            for root in s:
                cnt[root] += 1
            mp[i] = s

        mx, ans = -1, 0
        for i, s in mp.items():
            t = sum(size[root] for root in s if cnt[root] == 1)
            if mx < t or mx == t and i < ans:
                mx, ans = t, i
        return ans

Java

class Solution {
    private int[] p;
    private int[] size;

    public int minMalwareSpread(int[][] graph, int[] initial) {
        int n = graph.length;
        p = new int[n];
        size = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
            size[i] = 1;
        }
        boolean[] clean = new boolean[n];
        Arrays.fill(clean, true);
        for (int i : initial) {
            clean[i] = false;
        }
        for (int i = 0; i < n; ++i) {
            if (!clean[i]) {
                continue;
            }
            for (int j = i + 1; j < n; ++j) {
                if (clean[j] && graph[i][j] == 1) {
                    union(i, j);
                }
            }
        }
        int[] cnt = new int[n];
        Map<Integer, Set<Integer>> mp = new HashMap<>();
        for (int i : initial) {
            Set<Integer> s = new HashSet<>();
            for (int j = 0; j < n; ++j) {
                if (clean[j] && graph[i][j] == 1) {
                    s.add(find(j));
                }
            }
            for (int root : s) {
                cnt[root] += 1;
            }
            mp.put(i, s);
        }
        int mx = -1;
        int ans = 0;
        for (Map.Entry<Integer, Set<Integer>> entry : mp.entrySet()) {
            int i = entry.getKey();
            int t = 0;
            for (int root : entry.getValue()) {
                if (cnt[root] == 1) {
                    t += size[root];
                }
            }
            if (mx < t || (mx == t && i < ans)) {
                mx = t;
                ans = i;
            }
        }
        return ans;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }

    private void union(int a, int b) {
        int pa = find(a);
        int pb = find(b);
        if (pa != pb) {
            size[pb] += size[pa];
            p[pa] = pb;
        }
    }
}

C++

class Solution {
public:
    vector<int> p;
    vector<int> size;

    int minMalwareSpread(vector<vector<int>>& graph, vector<int>& initial) {
        int n = graph.size();
        p.resize(n);
        size.resize(n);
        for (int i = 0; i < n; ++i) p[i] = i;
        fill(size.begin(), size.end(), 1);
        vector<bool> clean(n, true);
        for (int i : initial) clean[i] = false;
        for (int i = 0; i < n; ++i) {
            if (!clean[i]) continue;
            for (int j = i + 1; j < n; ++j)
                if (clean[j] && graph[i][j] == 1) merge(i, j);
        }
        vector<int> cnt(n, 0);
        unordered_map<int, unordered_set<int>> mp;
        for (int i : initial) {
            unordered_set<int> s;
            for (int j = 0; j < n; ++j)
                if (clean[j] && graph[i][j] == 1) s.insert(find(j));
            for (int e : s) ++cnt[e];
            mp[i] = s;
        }
        int mx = -1, ans = 0;
        for (auto& [i, s] : mp) {
            int t = 0;
            for (int root : s)
                if (cnt[root] == 1)
                    t += size[root];
            if (mx < t || (mx == t && i < ans)) {
                mx = t;
                ans = i;
            }
        }
        return ans;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    void merge(int a, int b) {
        int pa = find(a), pb = find(b);
        if (pa != pb) {
            size[pb] += size[pa];
            p[pa] = pb;
        }
    }
};

Go

func minMalwareSpread(graph [][]int, initial []int) int {
	n := len(graph)
	p := make([]int, n)
	size := make([]int, n)
	clean := make([]bool, n)
	for i := 0; i < n; i++ {
		p[i], size[i], clean[i] = i, 1, true
	}
	for _, i := range initial {
		clean[i] = false
	}

	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	union := func(a, b int) {
		pa, pb := find(a), find(b)
		if pa != pb {
			size[pb] += size[pa]
			p[pa] = pb
		}
	}

	for i := 0; i < n; i++ {
		if !clean[i] {
			continue
		}
		for j := i + 1; j < n; j++ {
			if clean[j] && graph[i][j] == 1 {
				union(i, j)
			}
		}
	}
	cnt := make([]int, n)
	mp := make(map[int]map[int]bool)
	for _, i := range initial {
		s := make(map[int]bool)
		for j := 0; j < n; j++ {
			if clean[j] && graph[i][j] == 1 {
				s[find(j)] = true
			}
		}
		for root, _ := range s {
			cnt[root]++
		}
		mp[i] = s
	}
	mx, ans := -1, 0
	for i, s := range mp {
		t := 0
		for root, _ := range s {
			if cnt[root] == 1 {
				t += size[root]
			}
		}
		if mx < t || (mx == t && i < ans) {
			mx, ans = t, i
		}
	}
	return ans
}

...