Skip to content

Latest commit

 

History

History
490 lines (410 loc) · 13.3 KB

File metadata and controls

490 lines (410 loc) · 13.3 KB

English Version

题目描述

设计一个数据结构,有效地找到给定子数组的 多数元素

子数组的 多数元素 是在子数组中出现 threshold 次数或次数以上的元素。

实现 MajorityChecker 类:

  • MajorityChecker(int[] arr) 会用给定的数组 arr 对 MajorityChecker 初始化。
  • int query(int left, int right, int threshold) 返回子数组中的元素  arr[left...right] 至少出现 threshold 次数,如果不存在这样的元素则返回 -1

 

示例 1:

输入:
["MajorityChecker", "query", "query", "query"]
[[[1, 1, 2, 2, 1, 1]], [0, 5, 4], [0, 3, 3], [2, 3, 2]]
输出:
[null, 1, -1, 2]

解释:
MajorityChecker majorityChecker = new MajorityChecker([1,1,2,2,1,1]);
majorityChecker.query(0,5,4); // 返回 1
majorityChecker.query(0,3,3); // 返回 -1
majorityChecker.query(2,3,2); // 返回 2

 

提示:

  • 1 <= arr.length <= 2 * 104
  • 1 <= arr[i] <= 2 * 104
  • 0 <= left <= right < arr.length
  • threshold <= right - left + 1
  • 2 * threshold > right - left + 1
  • 调用 query 的次数最多为 104 

解法

方法一:线段树 + 摩尔投票 + 二分查找

我们注意到,题目需要我们找出特定区间内可能的众数,考虑使用线段树来维护每个区间内的候选众数以及其出现的次数。

我们定义线段树的每个节点为 Node,每个节点包含如下属性:

  • l:节点的左端点,下标从 $1$ 开始。
  • r:节点的右端点,下标从 $1$ 开始。
  • x:节点的候选众数。
  • cnt:节点的候选众数出现的次数。

线段树主要有以下几个操作:

  • build(u, l, r):建立线段树。
  • pushup(u):用子节点的信息更新父节点的信息。
  • query(u, l, r):查询区间和。

在主函数的初始化方法中,我们先创建一个线段树,并且用哈希表 $d$ 记录每个元素在数组中的所有下标。

query(left, right, threshold) 方法中,我们直接调用线段树的 query 方法,得到候选众数 $x$。然后使用二分查找,找到 $x$ 在数组中第一个大于等于 $left$ 的下标 $l$,以及第一个大于 $right$ 的下标 $r$。如果 $r - l \ge threshold$,则返回 $x$,否则返回 $-1$

时间复杂度方面,初始化方法的时间复杂度为 $O(n)$,查询方法的时间复杂度为 $O(\log n)$。空间复杂度为 $O(n)$。其中 $n$ 为数组的长度。

Python3

class Node:
    def __init__(self):
        self.l = self.r = 0
        self.x = self.cnt = 0


class SegmentTree:
    def __init__(self, nums):
        self.nums = nums
        n = len(nums)
        self.tr = [Node() for _ in range(n << 2)]
        self.build(1, 1, n)

    def build(self, u, l, r):
        self.tr[u].l, self.tr[u].r = l, r
        if l == r:
            self.tr[u].x = self.nums[l - 1]
            self.tr[u].cnt = 1
            return
        mid = (l + r) >> 1
        self.build(u << 1, l, mid)
        self.build(u << 1 | 1, mid + 1, r)
        self.pushup(u)

    def query(self, u, l, r):
        if self.tr[u].l >= l and self.tr[u].r <= r:
            return self.tr[u].x, self.tr[u].cnt
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        if r <= mid:
            return self.query(u << 1, l, r)
        if l > mid:
            return self.query(u << 1 | 1, l, r)
        x1, cnt1 = self.query(u << 1, l, r)
        x2, cnt2 = self.query(u << 1 | 1, l, r)
        if x1 == x2:
            return x1, cnt1 + cnt2
        if cnt1 >= cnt2:
            return x1, cnt1 - cnt2
        else:
            return x2, cnt2 - cnt1

    def pushup(self, u):
        if self.tr[u << 1].x == self.tr[u << 1 | 1].x:
            self.tr[u].x = self.tr[u << 1].x
            self.tr[u].cnt = self.tr[u << 1].cnt + self.tr[u << 1 | 1].cnt
        elif self.tr[u << 1].cnt >= self.tr[u << 1 | 1].cnt:
            self.tr[u].x = self.tr[u << 1].x
            self.tr[u].cnt = self.tr[u << 1].cnt - self.tr[u << 1 | 1].cnt
        else:
            self.tr[u].x = self.tr[u << 1 | 1].x
            self.tr[u].cnt = self.tr[u << 1 | 1].cnt - self.tr[u << 1].cnt


class MajorityChecker:
    def __init__(self, arr: List[int]):
        self.tree = SegmentTree(arr)
        self.d = defaultdict(list)
        for i, x in enumerate(arr):
            self.d[x].append(i)

    def query(self, left: int, right: int, threshold: int) -> int:
        x, _ = self.tree.query(1, left + 1, right + 1)
        l = bisect_left(self.d[x], left)
        r = bisect_left(self.d[x], right + 1)
        return x if r - l >= threshold else -1


# Your MajorityChecker object will be instantiated and called as such:
# obj = MajorityChecker(arr)
# param_1 = obj.query(left,right,threshold)

Java

class Node {
    int l, r;
    int x, cnt;
}

class SegmentTree {
    private Node[] tr;
    private int[] nums;

    public SegmentTree(int[] nums) {
        int n = nums.length;
        this.nums = nums;
        tr = new Node[n << 2];
        for (int i = 0; i < tr.length; ++i) {
            tr[i] = new Node();
        }
        build(1, 1, n);
    }

    private void build(int u, int l, int r) {
        tr[u].l = l;
        tr[u].r = r;
        if (l == r) {
            tr[u].x = nums[l - 1];
            tr[u].cnt = 1;
            return;
        }
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }

    public int[] query(int u, int l, int r) {
        if (tr[u].l >= l && tr[u].r <= r) {
            return new int[] {tr[u].x, tr[u].cnt};
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        if (r <= mid) {
            return query(u << 1, l, r);
        }
        if (l > mid) {
            return query(u << 1 | 1, l, r);
        }
        var left = query(u << 1, l, r);
        var right = query(u << 1 | 1, l, r);
        if (left[0] == right[0]) {
            left[1] += right[1];
        } else if (left[1] >= right[1]) {
            left[1] -= right[1];
        } else {
            right[1] -= left[1];
            left = right;
        }
        return left;
    }

    private void pushup(int u) {
        if (tr[u << 1].x == tr[u << 1 | 1].x) {
            tr[u].x = tr[u << 1].x;
            tr[u].cnt = tr[u << 1].cnt + tr[u << 1 | 1].cnt;
        } else if (tr[u << 1].cnt >= tr[u << 1 | 1].cnt) {
            tr[u].x = tr[u << 1].x;
            tr[u].cnt = tr[u << 1].cnt - tr[u << 1 | 1].cnt;
        } else {
            tr[u].x = tr[u << 1 | 1].x;
            tr[u].cnt = tr[u << 1 | 1].cnt - tr[u << 1].cnt;
        }
    }
}

class MajorityChecker {
    private SegmentTree tree;
    private Map<Integer, List<Integer>> d = new HashMap<>();

    public MajorityChecker(int[] arr) {
        tree = new SegmentTree(arr);
        for (int i = 0; i < arr.length; ++i) {
            d.computeIfAbsent(arr[i], k -> new ArrayList<>()).add(i);
        }
    }

    public int query(int left, int right, int threshold) {
        int x = tree.query(1, left + 1, right + 1)[0];
        int l = search(d.get(x), left);
        int r = search(d.get(x), right + 1);
        return r - l >= threshold ? x : -1;
    }

    private int search(List<Integer> arr, int x) {
        int left = 0, right = arr.size();
        while (left < right) {
            int mid = (left + right) >> 1;
            if (arr.get(mid) >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

/**
 * Your MajorityChecker object will be instantiated and called as such:
 * MajorityChecker obj = new MajorityChecker(arr);
 * int param_1 = obj.query(left,right,threshold);
 */

C++

class Node {
public:
    int l = 0, r = 0;
    int x = 0, cnt = 0;
};

using pii = pair<int, int>;

class SegmentTree {
public:
    SegmentTree(vector<int>& nums) {
        this->nums = nums;
        int n = nums.size();
        tr.resize(n << 2);
        for (int i = 0; i < tr.size(); ++i) {
            tr[i] = new Node();
        }
        build(1, 1, n);
    }

    pii query(int u, int l, int r) {
        if (tr[u]->l >= l && tr[u]->r <= r) {
            return {tr[u]->x, tr[u]->cnt};
        }
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        if (r <= mid) {
            return query(u << 1, l, r);
        }
        if (l > mid) {
            return query(u << 1 | 1, l, r);
        }
        auto left = query(u << 1, l, r);
        auto right = query(u << 1 | 1, l, r);
        if (left.first == right.first) {
            left.second += right.second;
        } else if (left.second >= right.second) {
            left.second -= right.second;
        } else {
            right.second -= left.second;
            left = right;
        }
        return left;
    }

private:
    vector<Node*> tr;
    vector<int> nums;

    void build(int u, int l, int r) {
        tr[u]->l = l;
        tr[u]->r = r;
        if (l == r) {
            tr[u]->x = nums[l - 1];
            tr[u]->cnt = 1;
            return;
        }
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }

    void pushup(int u) {
        if (tr[u << 1]->x == tr[u << 1 | 1]->x) {
            tr[u]->x = tr[u << 1]->x;
            tr[u]->cnt = tr[u << 1]->cnt + tr[u << 1 | 1]->cnt;
        } else if (tr[u << 1]->cnt >= tr[u << 1 | 1]->cnt) {
            tr[u]->x = tr[u << 1]->x;
            tr[u]->cnt = tr[u << 1]->cnt - tr[u << 1 | 1]->cnt;
        } else {
            tr[u]->x = tr[u << 1 | 1]->x;
            tr[u]->cnt = tr[u << 1 | 1]->cnt - tr[u << 1]->cnt;
        }
    }
};

class MajorityChecker {
public:
    MajorityChecker(vector<int>& arr) {
        tree = new SegmentTree(arr);
        for (int i = 0; i < arr.size(); ++i) {
            d[arr[i]].push_back(i);
        }
    }

    int query(int left, int right, int threshold) {
        int x = tree->query(1, left + 1, right + 1).first;
        auto l = lower_bound(d[x].begin(), d[x].end(), left);
        auto r = lower_bound(d[x].begin(), d[x].end(), right + 1);
        return r - l >= threshold ? x : -1;
    }

private:
    unordered_map<int, vector<int>> d;
    SegmentTree* tree;
};

/**
 * Your MajorityChecker object will be instantiated and called as such:
 * MajorityChecker* obj = new MajorityChecker(arr);
 * int param_1 = obj->query(left,right,threshold);
 */

Go

type node struct {
	l, r, x, cnt int
}

type segmentTree struct {
	nums []int
	tr   []*node
}

type pair struct{ x, cnt int }

func newSegmentTree(nums []int) *segmentTree {
	n := len(nums)
	tr := make([]*node, n<<2)
	for i := range tr {
		tr[i] = &node{}
	}
	t := &segmentTree{nums, tr}
	t.build(1, 1, n)
	return t
}

func (t *segmentTree) build(u, l, r int) {
	t.tr[u].l, t.tr[u].r = l, r
	if l == r {
		t.tr[u].x = t.nums[l-1]
		t.tr[u].cnt = 1
		return
	}
	mid := (l + r) >> 1
	t.build(u<<1, l, mid)
	t.build(u<<1|1, mid+1, r)
	t.pushup(u)
}

func (t *segmentTree) query(u, l, r int) pair {
	if t.tr[u].l >= l && t.tr[u].r <= r {
		return pair{t.tr[u].x, t.tr[u].cnt}
	}
	mid := (t.tr[u].l + t.tr[u].r) >> 1
	if r <= mid {
		return t.query(u<<1, l, r)
	}
	if l > mid {
		return t.query(u<<1|1, l, r)
	}
	left, right := t.query(u<<1, l, r), t.query(u<<1|1, l, r)
	if left.x == right.x {
		left.cnt += right.cnt
	} else if left.cnt >= right.cnt {
		left.cnt -= right.cnt
	} else {
		right.cnt -= left.cnt
		left = right
	}
	return left
}

func (t *segmentTree) pushup(u int) {
	if t.tr[u<<1].x == t.tr[u<<1|1].x {
		t.tr[u].x = t.tr[u<<1].x
		t.tr[u].cnt = t.tr[u<<1].cnt + t.tr[u<<1|1].cnt
	} else if t.tr[u<<1].cnt >= t.tr[u<<1|1].cnt {
		t.tr[u].x = t.tr[u<<1].x
		t.tr[u].cnt = t.tr[u<<1].cnt - t.tr[u<<1|1].cnt
	} else {
		t.tr[u].x = t.tr[u<<1|1].x
		t.tr[u].cnt = t.tr[u<<1|1].cnt - t.tr[u<<1].cnt
	}
}

type MajorityChecker struct {
	tree *segmentTree
	d    map[int][]int
}

func Constructor(arr []int) MajorityChecker {
	tree := newSegmentTree(arr)
	d := map[int][]int{}
	for i, x := range arr {
		d[x] = append(d[x], i)
	}
	return MajorityChecker{tree, d}
}

func (this *MajorityChecker) Query(left int, right int, threshold int) int {
	x := this.tree.query(1, left+1, right+1).x
	l := sort.SearchInts(this.d[x], left)
	r := sort.SearchInts(this.d[x], right+1)
	if r-l >= threshold {
		return x
	}
	return -1
}

/**
 * Your MajorityChecker object will be instantiated and called as such:
 * obj := Constructor(arr);
 * param_1 := obj.Query(left,right,threshold);
 */

...