你准备参加一场远足活动。给你一个二维 rows x columns
的地图 heights
,其中 heights[row][col]
表示格子 (row, col)
的高度。一开始你在最左上角的格子 (0, 0)
,且你希望去最右下角的格子 (rows-1, columns-1)
(注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。
一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。
请你返回从左上角走到右下角的最小 体力消耗值 。
示例 1:
输入:heights = [[1,2,2],[3,8,2],[5,3,5]] 输出:2 解释:路径 [1,3,5,3,5] 连续格子的差值绝对值最大为 2 。 这条路径比路径 [1,2,2,2,5] 更优,因为另一条路径差值最大值为 3 。
示例 2:
输入:heights = [[1,2,3],[3,8,4],[5,3,5]] 输出:1 解释:路径 [1,2,3,4,5] 的相邻格子差值绝对值最大为 1 ,比路径 [1,3,5,3,5] 更优。
示例 3:
输入:heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]] 输出:0 解释:上图所示路径不需要消耗任何体力。
提示:
rows == heights.length
columns == heights[i].length
1 <= rows, columns <= 100
1 <= heights[i][j] <= 106
方法一:并查集
对于本题,每个格子当做图的一个节点,把相邻两个格子的高度差绝对值当做边的权重,因此本题是求解从最左上角的节点到最右下角的节点的连通性问题。
先把图中所有边去掉,然后按照边的权重从小到大,逐个把边添加上。如果在某一次添加一条边时,最左上角和最右下角的节点连通了,那么该边的权重就是题目的最小体力消耗值。
并查集模板:
模板 1——朴素并查集:
# 初始化,p存储每个点的父节点
p = list(range(n))
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
模板 2——维护 size 的并查集:
# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
if find(a) != find(b):
size[find(b)] += size[find(a)]
p[find(a)] = find(b)
模板 3——维护到祖宗节点距离的并查集:
# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
t = find(p[x])
d[x] += d[p[x]]
p[x] = t
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance
方法二:二分查找 + BFS
二分枚举体力消耗值,用 BFS 找到满足条件的最小消耗值即可。
方法三:堆优化版 Dijkstra 算法
时间复杂度 O(mlogn)。
并查集:
class Solution:
def minimumEffortPath(self, heights: List[List[int]]) -> int:
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
m, n = len(heights), len(heights[0])
p = list(range(m * n))
e = []
for i in range(m):
for j in range(n):
if i < m - 1:
e.append(
(
abs(heights[i][j] - heights[i + 1][j]),
i * n + j,
(i + 1) * n + j,
)
)
if j < n - 1:
e.append(
(
abs(heights[i][j] - heights[i][j + 1]),
i * n + j,
i * n + j + 1,
)
)
e.sort()
for h, i, j in e:
p[find(i)] = find(j)
if find(0) == find(m * n - 1):
return h
return 0
二分查找 + BFS:
class Solution:
def minimumEffortPath(self, heights: List[List[int]]) -> int:
m, n = len(heights), len(heights[0])
left, right = 0, 999999
while left < right:
mid = (left + right) >> 1
q = deque([(0, 0)])
vis = {(0, 0)}
while q:
i, j = q.popleft()
for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
x, y = i + a, j + b
if (
0 <= x < m
and 0 <= y < n
and (x, y) not in vis
and abs(heights[i][j] - heights[x][y]) <= mid
):
q.append((x, y))
vis.add((x, y))
if (m - 1, n - 1) in vis:
right = mid
else:
left = mid + 1
return left
Dijkstra 算法:
class Solution:
def minimumEffortPath(self, heights: List[List[int]]) -> int:
INF = 0x3F3F3F3F
m, n = len(heights), len(heights[0])
dist = [[INF] * n for _ in range(m)]
dist[0][0] = 0
dirs = [-1, 0, 1, 0, -1]
q = [(0, 0, 0)]
while q:
t, i, j = heappop(q)
for k in range(4):
x, y = i + dirs[k], j + dirs[k + 1]
if (
0 <= x < m
and 0 <= y < n
and max(t, abs(heights[x][y] - heights[i][j])) < dist[x][y]
):
dist[x][y] = max(t, abs(heights[x][y] - heights[i][j]))
heappush(q, (dist[x][y], x, y))
return dist[-1][-1]
并查集:
class Solution {
private int[] p;
public int minimumEffortPath(int[][] heights) {
int m = heights.length;
int n = heights[0].length;
p = new int[m * n];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
List<int[]> edges = new ArrayList<>();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i < m - 1) {
edges.add(new int[] {
Math.abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j});
}
if (j < n - 1) {
edges.add(new int[] {
Math.abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1});
}
}
}
Collections.sort(edges, Comparator.comparingInt(a -> a[0]));
for (int[] e : edges) {
int i = e[1], j = e[2];
p[find(i)] = find(j);
if (find(0) == find(m * n - 1)) {
return e[0];
}
}
return 0;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
二分查找 + BFS:
class Solution {
public int minimumEffortPath(int[][] heights) {
int m = heights.length;
int n = heights[0].length;
int left = 0;
int right = 999999;
int[] dirs = {-1, 0, 1, 0, -1};
while (left < right) {
int mid = (left + right) >> 1;
boolean[][] vis = new boolean[m][n];
vis[0][0] = true;
Deque<int[]> q = new ArrayDeque<>();
q.offer(new int[] {0, 0});
while (!q.isEmpty()) {
int[] p = q.poll();
int i = p[0], j = p[1];
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y]
&& Math.abs(heights[i][j] - heights[x][y]) <= mid) {
q.offer(new int[] {x, y});
vis[x][y] = true;
}
}
}
if (vis[m - 1][n - 1]) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
Dijkstra 算法:
class Solution {
public int minimumEffortPath(int[][] heights) {
int m = heights.length;
int n = heights[0].length;
int[][] dist = new int[m][n];
for (int i = 0; i < m; ++i) {
Arrays.fill(dist[i], 0x3f3f3f3f);
}
dist[0][0] = 0;
PriorityQueue<int[]> q = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
q.offer(new int[] {0, 0, 0});
int[] dirs = {-1, 0, 1, 0, -1};
while (!q.isEmpty()) {
int[] p = q.poll();
int t = p[0], i = p[1], j = p[2];
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
int nd = Math.max(t, Math.abs(heights[x][y] - heights[i][j]));
if (nd < dist[x][y]) {
dist[x][y] = nd;
q.offer(new int[] {nd, x, y});
}
}
}
}
return dist[m - 1][n - 1];
}
}
并查集:
class Solution {
public:
vector<int> p;
int minimumEffortPath(vector<vector<int>>& heights) {
int m = heights.size(), n = heights[0].size();
p.resize(m * n);
for (int i = 0; i < p.size(); ++i) p[i] = i;
vector<vector<int>> edges;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i < m - 1) edges.push_back({abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j});
if (j < n - 1) edges.push_back({abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1});
}
}
sort(edges.begin(), edges.end());
for (auto& e : edges) {
int i = e[1], j = e[2];
p[find(i)] = find(j);
if (find(0) == find(m * n - 1)) return e[0];
}
return 0;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
二分查找 + BFS:
class Solution {
public:
int minimumEffortPath(vector<vector<int>>& heights) {
int m = heights.size(), n = heights[0].size();
int left = 0, right = 999999;
vector<int> dirs = {-1, 0, 1, 0, -1};
while (left < right) {
int mid = (left + right) >> 1;
vector<vector<bool>> vis(m, vector<bool>(n));
vis[0][0] = true;
queue<pair<int, int>> q;
q.push({0, 0});
while (!q.empty()) {
auto [i, j] = q.front();
q.pop();
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && abs(heights[i][j] - heights[x][y]) <= mid) {
q.push({x, y});
vis[x][y] = true;
}
}
}
if (vis[m - 1][n - 1])
right = mid;
else
left = mid + 1;
}
return left;
}
};
Dijkstra 算法:
class Solution {
public:
int minimumEffortPath(vector<vector<int>>& heights) {
int m = heights.size(), n = heights[0].size();
vector<vector<int>> dist(m, vector<int>(n, 0x3f3f3f3f));
dist[0][0] = 0;
priority_queue<tuple<int, int, int>, vector<tuple<int, int, int>>, greater<tuple<int, int, int>>> q;
q.push({0, 0, 0});
vector<int> dirs = {-1, 0, 1, 0, -1};
while (!q.empty()) {
auto [t, i, j] = q.top();
q.pop();
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
int nd = max(t, abs(heights[x][y] - heights[i][j]));
if (nd < dist[x][y]) {
dist[x][y] = nd;
q.push({nd, x, y});
}
}
}
}
return dist[m - 1][n - 1];
}
};
并查集:
func minimumEffortPath(heights [][]int) int {
m, n := len(heights), len(heights[0])
p := make([]int, m*n)
for i := range p {
p[i] = i
}
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
edges := [][]int{}
for i, row := range heights {
for j, h := range row {
if i < m-1 {
s := []int{abs(h - heights[i+1][j]), i*n + j, (i+1)*n + j}
edges = append(edges, s)
}
if j < n-1 {
s := []int{abs(h - row[j+1]), i*n + j, i*n + j + 1}
edges = append(edges, s)
}
}
}
sort.Slice(edges, func(i, j int) bool {
return edges[i][0] < edges[j][0]
})
for _, e := range edges {
i, j := e[1], e[2]
p[find(i)] = find(j)
if find(0) == find(m*n-1) {
return e[0]
}
}
return 0
}
func abs(x int) int {
if x > 0 {
return x
}
return -x
}
二分查找 + BFS:
func minimumEffortPath(heights [][]int) int {
m, n := len(heights), len(heights[0])
left, right := 0, 999999
dirs := []int{-1, 0, 1, 0, -1}
for left < right {
mid := (left + right) >> 1
vis := make([][]bool, m)
for i := range vis {
vis[i] = make([]bool, n)
}
vis[0][0] = true
q := [][]int{{0, 0}}
for len(q) > 0 {
p := q[0]
q = q[1:]
i, j := p[0], p[1]
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && abs(heights[i][j]-heights[x][y]) <= mid {
q = append(q, []int{x, y})
vis[x][y] = true
}
}
}
if vis[m-1][n-1] {
right = mid
} else {
left = mid + 1
}
}
return left
}
func abs(x int) int {
if x > 0 {
return x
}
return -x
}