Skip to content

Latest commit

 

History

History
180 lines (149 loc) · 4.3 KB

File metadata and controls

180 lines (149 loc) · 4.3 KB

中文文档

Description

A subsequence of a string s is considered a good palindromic subsequence if:

  • It is a subsequence of s.
  • It is a palindrome (has the same value if reversed).
  • It has an even length.
  • No two consecutive characters are equal, except the two middle ones.

For example, if s = "abcabcabb", then "abba" is considered a good palindromic subsequence, while "bcb" (not even length) and "bbbb" (has equal consecutive characters) are not.

Given a string s, return the length of the longest good palindromic subsequence in s.

 

Example 1:

Input: s = "bbabab"
Output: 4
Explanation: The longest good palindromic subsequence of s is "baab".

Example 2:

Input: s = "dcbccacdb"
Output: 4
Explanation: The longest good palindromic subsequence of s is "dccd".

 

Constraints:

  • 1 <= s.length <= 250
  • s consists of lowercase English letters.

Solutions

Python3

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        @cache
        def dfs(i, j, x):
            if i >= j:
                return 0
            if s[i] == s[j] and s[i] != x:
                return dfs(i + 1, j - 1, s[i]) + 2
            return max(dfs(i + 1, j, x), dfs(i, j - 1, x))

        ans = dfs(0, len(s) - 1, '')
        dfs.cache_clear()
        return ans

Java

class Solution {
    private int[][][] f;
    private String s;

    public int longestPalindromeSubseq(String s) {
        int n = s.length();
        this.s = s;
        f = new int[n][n][27];
        for (var a : f) {
            for (var b : a) {
                Arrays.fill(b, -1);
            }
        }
        return dfs(0, n - 1, 26);
    }

    private int dfs(int i, int j, int x) {
        if (i >= j) {
            return 0;
        }
        if (f[i][j][x] != -1) {
            return f[i][j][x];
        }
        int ans = 0;
        if (s.charAt(i) == s.charAt(j) && s.charAt(i) - 'a' != x) {
            ans = dfs(i + 1, j - 1, s.charAt(i) - 'a') + 2;
        } else {
            ans = Math.max(dfs(i + 1, j, x), dfs(i, j - 1, x));
        }
        f[i][j][x] = ans;
        return ans;
    }
}

C++

class Solution {
public:
    int f[251][251][27];

    int longestPalindromeSubseq(string s) {
        int n = s.size();
        memset(f, -1, sizeof f);
        function<int(int, int, int)> dfs = [&](int i, int j, int x) -> int {
            if (i >= j) return 0;
            if (f[i][j][x] != -1) return f[i][j][x];
            int ans = 0;
            if (s[i] == s[j] && s[i] - 'a' != x)
                ans = dfs(i + 1, j - 1, s[i] - 'a') + 2;
            else
                ans = max(dfs(i + 1, j, x), dfs(i, j - 1, x));
            f[i][j][x] = ans;
            return ans;
        };
        return dfs(0, n - 1, 26);
    }
};

Go

func longestPalindromeSubseq(s string) int {
	n := len(s)
	f := make([][][]int, n)
	for i := range f {
		f[i] = make([][]int, n)
		for j := range f[i] {
			f[i][j] = make([]int, 27)
			for k := range f[i][j] {
				f[i][j][k] = -1
			}
		}
	}
	var dfs func(i, j, x int) int
	dfs = func(i, j, x int) int {
		if i >= j {
			return 0
		}
		if f[i][j][x] != -1 {
			return f[i][j][x]
		}
		ans := 0
		if s[i] == s[j] && int(s[i]-'a') != x {
			ans = dfs(i+1, j-1, int(s[i]-'a')) + 2
		} else {
			ans = max(dfs(i+1, j, x), dfs(i, j-1, x))
		}
		f[i][j][x] = ans
		return ans
	}
	return dfs(0, n-1, 26)
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

...