You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "/mnt/4T/Codes/stable-diffusion-webui/modules/call_queue.py", line 74, in f
res = list(func(*args, **kwargs))
File "/mnt/4T/Codes/stable-diffusion-webui/modules/call_queue.py", line 53, in f
res = func(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/txt2img.py", line 109, in txt2img
processed = processing.process_images(p)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/processing.py", line 847, in process_images
res = process_images_inner(p)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/processing.py", line 988, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/processing.py", line 1362, in sample
return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/processing.py", line 1461, in sample_hr_pass
decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/processing.py", line 632, in decode_latent_batch
sample = decode_first_stage(model, batch[i:i + 1])[0]
File "/mnt/4T/Codes/stable-diffusion-webui/modules/sd_samplers_common.py", line 76, in decode_first_stage
return samples_to_images_tensor(x, approx_index, model)
File "/mnt/4T/Codes/stable-diffusion-webui/modules/sd_samplers_common.py", line 58, in samples_to_images_tensor
x_sample = model.decode_first_stage(sample.to(model.first_stage_model.dtype))
File "/mnt/4T/Codes/stable-diffusion-webui/modules/sd_hijack_utils.py", line 22, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "/mnt/4T/Codes/stable-diffusion-webui/modules/sd_hijack_utils.py", line 36, in __call__
return self.__orig_func(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/models/diffusion/ddpm.py", line 826, in decode_first_stage
return self.first_stage_model.decode(z)
File "/mnt/4T/Codes/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/models/autoencoder.py", line 90, in decode
dec = self.decoder(z)
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/model.py", line 631, in forward
h = self.mid.attn_1(h)
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/mnt/4T/Codes/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/model.py", line 258, in forward
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/xformers/ops/fmha/__init__.py", line 306, in memory_efficient_attention
return _memory_efficient_attention(
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/xformers/ops/fmha/__init__.py", line 467, in _memory_efficient_attention
return _memory_efficient_attention_forward(
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/xformers/ops/fmha/__init__.py", line 486, in _memory_efficient_attention_forward
op = _dispatch_fw(inp, False)
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 135, in _dispatch_fw
return _run_priority_list(
File "/mnt/4T/Codes/stable-diffusion-webui/stable-diffusion-webui/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 76, in _run_priority_list
raise NotImplementedError(msg)
NotImplementedError: No operator found for `memory_efficient_attention_forward` with inputs:
query : shape=(1, 24576, 1, 512) (torch.float16)
key : shape=(1, 24576, 1, 512) (torch.float16)
value : shape=(1, 24576, 1, 512) (torch.float16)
attn_bias : <class 'NoneType'>
p : 0.0
`ckF` is not supported because:
max(query.shape[-1], value.shape[-1]) > 256
Operating System
Ubuntu 22.04.4 LTS (Jammy Jellyfish)
CPU
Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
GPU
AMD Radeon RX 7900 XTX
Other
No response
ROCm Version
ROCm 6.2.3
ROCm Component
Composable Kernel
Steps to Reproduce
Use xformers for ROCm with stable diffusion.
(Optional for Linux users) Output of /opt/rocm/bin/rocminfo --support
$ /opt/rocm/bin/rocminfo --support
ROCk module version 6.8.5 is loaded
=====================
HSA System Attributes
=====================
Runtime Version: 1.14
Runtime Ext Version: 1.6
System Timestamp Freq.: 1000.000000MHz
Sig. Max Wait Duration: 18446744073709551615 (0xFFFFFFFFFFFFFFFF) (timestamp count)
Machine Model: LARGE
System Endianness: LITTLE
Mwaitx: DISABLED
DMAbuf Support: YES
==========
HSA Agents
==========
*******
Agent 1
*******
Name: Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
Uuid: CPU-XX
Marketing Name: Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
Vendor Name: CPU
Feature: None specified
Profile: FULL_PROFILE
Float Round Mode: NEAR
Max Queue Number: 0(0x0)
Queue Min Size: 0(0x0)
Queue Max Size: 0(0x0)
Queue Type: MULTI
Node: 0
Device Type: CPU
Cache Info:
L1: 32768(0x8000) KB
Chip ID: 0(0x0)
ASIC Revision: 0(0x0)
Cacheline Size: 64(0x40)
Max Clock Freq. (MHz): 4700
BDFID: 0
Internal Node ID: 0
Compute Unit: 8
SIMDs per CU: 0
Shader Engines: 0
Shader Arrs. per Eng.: 0
WatchPts on Addr. Ranges:1
Memory Properties:
Features: None
Pool Info:
Pool 1
Segment: GLOBAL; FLAGS: FINE GRAINED
Size: 65781360(0x3ebbe70) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Recommended Granule:4KB
Alloc Alignment: 4KB
Accessible by all: TRUE
Pool 2
Segment: GLOBAL; FLAGS: KERNARG, FINE GRAINED
Size: 65781360(0x3ebbe70) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Recommended Granule:4KB
Alloc Alignment: 4KB
Accessible by all: TRUE
Pool 3
Segment: GLOBAL; FLAGS: COARSE GRAINED
Size: 65781360(0x3ebbe70) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Recommended Granule:4KB
Alloc Alignment: 4KB
Accessible by all: TRUE
ISA Info:
*******
Agent 2
*******
Name: gfx1100
Uuid: GPU-85631fd855c9cea1
Marketing Name: Radeon RX 7900 XTX
Vendor Name: AMD
Feature: KERNEL_DISPATCH
Profile: BASE_PROFILE
Float Round Mode: NEAR
Max Queue Number: 128(0x80)
Queue Min Size: 64(0x40)
Queue Max Size: 131072(0x20000)
Queue Type: MULTI
Node: 1
Device Type: GPU
Cache Info:
L1: 32(0x20) KB
L2: 6144(0x1800) KB
L3: 98304(0x18000) KB
Chip ID: 29772(0x744c)
ASIC Revision: 0(0x0)
Cacheline Size: 64(0x40)
Max Clock Freq. (MHz): 2482
BDFID: 768
Internal Node ID: 1
Compute Unit: 96
SIMDs per CU: 2
Shader Engines: 6
Shader Arrs. per Eng.: 2
WatchPts on Addr. Ranges:4
Coherent Host Access: FALSE
Memory Properties:
Features: KERNEL_DISPATCH
Fast F16 Operation: TRUE
Wavefront Size: 32(0x20)
Workgroup Max Size: 1024(0x400)
Workgroup Max Size per Dimension:
x 1024(0x400)
y 1024(0x400)
z 1024(0x400)
Max Waves Per CU: 32(0x20)
Max Work-item Per CU: 1024(0x400)
Grid Max Size: 4294967295(0xffffffff)
Grid Max Size per Dimension:
x 4294967295(0xffffffff)
y 4294967295(0xffffffff)
z 4294967295(0xffffffff)
Max fbarriers/Workgrp: 32
Packet Processor uCode:: 342
SDMA engine uCode:: 21
IOMMU Support:: None
Pool Info:
Pool 1
Segment: GLOBAL; FLAGS: COARSE GRAINED
Size: 25149440(0x17fc000) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Recommended Granule:2048KB
Alloc Alignment: 4KB
Accessible by all: FALSE
Pool 2
Segment: GLOBAL; FLAGS: EXTENDED FINE GRAINED
Size: 25149440(0x17fc000) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Recommended Granule:2048KB
Alloc Alignment: 4KB
Accessible by all: FALSE
Pool 3
Segment: GROUP
Size: 64(0x40) KB
Allocatable: FALSE
Alloc Granule: 0KB
Alloc Recommended Granule:0KB
Alloc Alignment: 0KB
Accessible by all: FALSE
ISA Info:
ISA 1
Name: amdgcn-amd-amdhsa--gfx1100
Machine Models: HSA_MACHINE_MODEL_LARGE
Profiles: HSA_PROFILE_BASE
Default Rounding Mode: NEAR
Default Rounding Mode: NEAR
Fast f16: TRUE
Workgroup Max Size: 1024(0x400)
Workgroup Max Size per Dimension:
x 1024(0x400)
y 1024(0x400)
z 1024(0x400)
Grid Max Size: 4294967295(0xffffffff)
Grid Max Size per Dimension:
x 4294967295(0xffffffff)
y 4294967295(0xffffffff)
z 4294967295(0xffffffff)
FBarrier Max Size: 32
*** Done ***
Additional Information
The problem is exactly as stated: the head dimension of the data (512) is too big to use xformers memory_efficient_attention !
The implementations (Ops) behind fmha are different on different platforms. On nvidia there's the cutlass backend which supports very large embedding dimensions. On AMD there's only the ck ones.
Do u have any plan to implement this in future?
The text was updated successfully, but these errors were encountered:
Hi @Looong01 Hi, thanks for reaching out! We are aware of this gap and are working on addressing it internally. However, we do not have a specific release date at the moment. Please keep an eye out for updates on official ROCm release channel. Thank you!
Problem Description
Operating System
Ubuntu 22.04.4 LTS (Jammy Jellyfish)
CPU
Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
GPU
AMD Radeon RX 7900 XTX
Other
No response
ROCm Version
ROCm 6.2.3
ROCm Component
Composable Kernel
Steps to Reproduce
Use xformers for ROCm with stable diffusion.
(Optional for Linux users) Output of /opt/rocm/bin/rocminfo --support
Additional Information
The problem is exactly as stated: the head dimension of the data (512) is too big to use xformers memory_efficient_attention !
The implementations (Ops) behind fmha are different on different platforms. On nvidia there's the cutlass backend which supports very large embedding dimensions. On AMD there's only the ck ones.
Do u have any plan to implement this in future?
The text was updated successfully, but these errors were encountered: