-
Notifications
You must be signed in to change notification settings - Fork 19
/
test.py
153 lines (124 loc) · 5.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys
import yaml
import time
import shutil
import torch
import random
import argparse
import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# import torchvision.models as models
# import torchvision
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from PIL import Image
# from visdom import Visdom
_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'utils')
sys.path.append(_path)
from torch.utils import data
from tqdm import tqdm
from data import create_dataset
from models import create_model
from utils.utils import get_logger
from augmentations import get_composed_augmentations
from models.adaptation_model import CustomModel, CustomMetrics
from optimizers import get_optimizer
from schedulers import get_scheduler
from metrics import runningScore, averageMeter
from loss import get_loss_function
from utils import sync_batchnorm
from tensorboardX import SummaryWriter
def test(cfg, writer, logger):
torch.manual_seed(cfg.get('seed', 1337))
torch.cuda.manual_seed(cfg.get('seed', 1337))
np.random.seed(cfg.get('seed', 1337))
random.seed(cfg.get('seed', 1337))
## create dataset
default_gpu = cfg['model']['default_gpu']
device = torch.device("cuda:{}".format(default_gpu) if torch.cuda.is_available() else 'cpu')
datasets = create_dataset(cfg, writer, logger) #source_train\ target_train\ source_valid\ target_valid + _loader
model = CustomModel(cfg, writer, logger)
running_metrics_val = runningScore(cfg['data']['target']['n_class'])
source_running_metrics_val = runningScore(cfg['data']['target']['n_class'])
val_loss_meter = averageMeter()
source_val_loss_meter = averageMeter()
time_meter = averageMeter()
loss_fn = get_loss_function(cfg)
path = cfg['test']['path']
checkpoint = torch.load(path)
model.adaptive_load_nets(model.BaseNet, checkpoint['DeepLab']['model_state'])
validation(
model, logger, writer, datasets, device, running_metrics_val, val_loss_meter, loss_fn,\
source_val_loss_meter, source_running_metrics_val, iters = model.iter
)
def validation(model, logger, writer, datasets, device, running_metrics_val, val_loss_meter, loss_fn,\
source_val_loss_meter, source_running_metrics_val, iters):
iters = iters
_k = -1
model.eval(logger=logger)
torch.cuda.empty_cache()
with torch.no_grad():
validate(
datasets.target_valid_loader, device, model, running_metrics_val,
val_loss_meter, loss_fn
)
writer.add_scalar('loss/val_loss', val_loss_meter.avg, iters+1)
logger.info("Iter %d Loss: %.4f" % (iters + 1, val_loss_meter.avg))
writer.add_scalar('loss/source_val_loss', source_val_loss_meter.avg, iters+1)
logger.info("Iter %d Source Loss: %.4f" % (iters + 1, source_val_loss_meter.avg))
score, class_iou = running_metrics_val.get_scores()
for k, v in score.items():
print(k, v)
logger.info('{}: {}'.format(k, v))
writer.add_scalar('val_metrics/{}'.format(k), v, iters+1)
for k, v in class_iou.items():
logger.info('{}: {}'.format(k, v))
writer.add_scalar('val_metrics/cls_{}'.format(k), v, iters+1)
val_loss_meter.reset()
running_metrics_val.reset()
source_val_loss_meter.reset()
source_running_metrics_val.reset()
torch.cuda.empty_cache()
return score["Mean IoU : \t"]
def validate(valid_loader, device, model, running_metrics_val, val_loss_meter, loss_fn):
for (images_val, labels_val, filename) in tqdm(valid_loader):
images_val = images_val.to(device)
labels_val = labels_val.to(device)
_, _, feat_cls, outs = model.forward(images_val)
outputs = F.interpolate(outs, size=images_val.size()[2:], mode='bilinear', align_corners=True)
val_loss = loss_fn(input=outputs, target=labels_val)
pred = outputs.data.max(1)[1].cpu().numpy()
gt = labels_val.data.cpu().numpy()
running_metrics_val.update(gt, pred)
val_loss_meter.update(val_loss.item())
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
# default="configs/pspnet_cityscapes.yml",
# default="configs/pspnet_gta5.yml",
default='configs/test_from_gta_to_city.yml',
help="Configuration file to use"
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
run_id = random.randint(1, 100000)
# path = cfg['training']['save_path']
logdir = os.path.join('runs', os.path.basename(args.config)[:-4], str(run_id))
writer = SummaryWriter(log_dir=logdir)
print('RUNDIR: {}'.format(logdir))
shutil.copy(args.config, logdir)
logger = get_logger(logdir)
logger.info('Let the games begin')
# train(cfg, writer, logger)
test(cfg, writer, logger)