forked from ml-lab/TensorBox
-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
executable file
·549 lines (481 loc) · 24.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#!/usr/bin/env python
import json
import cv2
import tensorflow.contrib.slim as slim
import datetime
import random
import time
import string
import argparse
import os
import threading
from scipy import misc
import tensorflow as tf
import numpy as np
from distutils.version import LooseVersion
if LooseVersion(tf.__version__) >= LooseVersion('1.0'):
rnn_cell = tf.contrib.rnn
else:
try:
from tensorflow.models.rnn import rnn_cell
except ImportError:
rnn_cell = tf.nn.rnn_cell
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
random.seed(0)
np.random.seed(0)
from utils import train_utils, googlenet_load, tf_concat
@ops.RegisterGradient("Hungarian")
def _hungarian_grad(op, *args):
return map(array_ops.zeros_like, op.inputs)
def build_lstm_inner(H, lstm_input):
'''
build lstm decoder
'''
lstm_cell = rnn_cell.BasicLSTMCell(H['lstm_size'], forget_bias=0.0, state_is_tuple=True)
if H['num_lstm_layers'] > 1:
lstm = rnn_cell.MultiRNNCell([lstm_cell] * H['num_lstm_layers'], state_is_tuple=True)
else:
lstm = lstm_cell
batch_size = H['batch_size'] * H['grid_height'] * H['grid_width']
state = lstm.zero_state(batch_size, tf.float32)
outputs = []
with tf.variable_scope('RNN', initializer=tf.random_uniform_initializer(-0.1, 0.1)):
for time_step in range(H['rnn_len']):
if time_step > 0: tf.get_variable_scope().reuse_variables()
output, state = lstm(lstm_input, state)
outputs.append(output)
return outputs
def build_overfeat_inner(H, lstm_input):
'''
build simple overfeat decoder
'''
if H['rnn_len'] > 1:
raise ValueError('rnn_len > 1 only supported with use_lstm == True')
outputs = []
initializer = tf.random_uniform_initializer(-0.1, 0.1)
with tf.variable_scope('Overfeat', initializer=initializer):
w = tf.get_variable('ip', shape=[H['later_feat_channels'], H['lstm_size']])
outputs.append(tf.matmul(lstm_input, w))
return outputs
def deconv(x, output_shape, channels):
k_h = 2
k_w = 2
w = tf.get_variable('w_deconv', initializer=tf.random_normal_initializer(stddev=0.01),
shape=[k_h, k_w, channels[1], channels[0]])
y = tf.nn.conv2d_transpose(x, w, output_shape, strides=[1, k_h, k_w, 1], padding='VALID')
return y
def rezoom(H, pred_boxes, early_feat, early_feat_channels, w_offsets, h_offsets):
'''
Rezoom into a feature map at multiple interpolation points in a grid.
If the predicted object center is at X, len(w_offsets) == 3, and len(h_offsets) == 5,
the rezoom grid will look as follows:
[o o o]
[o o o]
[o X o]
[o o o]
[o o o]
Where each letter indexes into the feature map with bilinear interpolation
'''
grid_size = H['grid_width'] * H['grid_height']
outer_size = grid_size * H['batch_size']
indices = []
for w_offset in w_offsets:
for h_offset in h_offsets:
indices.append(train_utils.bilinear_select(H,
pred_boxes,
early_feat,
early_feat_channels,
w_offset, h_offset))
interp_indices = tf_concat(0, indices)
rezoom_features = train_utils.interp(early_feat,
interp_indices,
early_feat_channels)
rezoom_features_r = tf.reshape(rezoom_features,
[len(w_offsets) * len(h_offsets),
outer_size,
H['rnn_len'],
early_feat_channels])
rezoom_features_t = tf.transpose(rezoom_features_r, [1, 2, 0, 3])
return tf.reshape(rezoom_features_t,
[outer_size,
H['rnn_len'],
len(w_offsets) * len(h_offsets) * early_feat_channels])
def build_forward(H, x, phase, reuse):
'''
Construct the forward model
'''
grid_size = H['grid_width'] * H['grid_height']
outer_size = grid_size * H['batch_size']
input_mean = 117.
x -= input_mean
cnn, early_feat = googlenet_load.model(x, H, reuse)
early_feat_channels = H['early_feat_channels']
early_feat = early_feat[:, :, :, :early_feat_channels]
if H['deconv']:
size = 3
stride = 2
pool_size = 5
with tf.variable_scope("deconv", reuse=reuse):
w = tf.get_variable('conv_pool_w', shape=[size, size, H['later_feat_channels'], H['later_feat_channels']],
initializer=tf.random_normal_initializer(stddev=0.01))
cnn_s = tf.nn.conv2d(cnn, w, strides=[1, stride, stride, 1], padding='SAME')
cnn_s_pool = tf.nn.avg_pool(cnn_s[:, :, :, :256], ksize=[1, pool_size, pool_size, 1],
strides=[1, 1, 1, 1], padding='SAME')
cnn_s_with_pool = tf_concat(3, [cnn_s_pool, cnn_s[:, :, :, 256:]])
cnn_deconv = deconv(cnn_s_with_pool, output_shape=[H['batch_size'], H['grid_height'], H['grid_width'], 256], channels=[H['later_feat_channels'], 256])
cnn = tf_concat(3, (cnn_deconv, cnn[:, :, :, 256:]))
elif H['avg_pool_size'] > 1:
pool_size = H['avg_pool_size']
cnn1 = cnn[:, :, :, :700]
cnn2 = cnn[:, :, :, 700:]
cnn2 = tf.nn.avg_pool(cnn2, ksize=[1, pool_size, pool_size, 1],
strides=[1, 1, 1, 1], padding='SAME')
cnn = tf_concat(3, [cnn1, cnn2])
cnn = tf.reshape(cnn,
[H['batch_size'] * H['grid_width'] * H['grid_height'], H['later_feat_channels']])
initializer = tf.random_uniform_initializer(-0.1, 0.1)
with tf.variable_scope('decoder', reuse=reuse, initializer=initializer):
scale_down = 0.01
lstm_input = tf.reshape(cnn * scale_down, (H['batch_size'] * grid_size, H['later_feat_channels']))
if H['use_lstm']:
lstm_outputs = build_lstm_inner(H, lstm_input)
else:
lstm_outputs = build_overfeat_inner(H, lstm_input)
pred_boxes = []
pred_logits = []
for k in range(H['rnn_len']):
output = lstm_outputs[k]
if phase == 'train':
output = tf.nn.dropout(output, 0.5)
box_weights = tf.get_variable('box_ip%d' % k,
shape=(H['lstm_size'], 4))
conf_weights = tf.get_variable('conf_ip%d' % k,
shape=(H['lstm_size'], H['num_classes']))
pred_boxes_step = tf.reshape(tf.matmul(output, box_weights) * 50,
[outer_size, 1, 4])
pred_boxes.append(pred_boxes_step)
pred_logits.append(tf.reshape(tf.matmul(output, conf_weights),
[outer_size, 1, H['num_classes']]))
pred_boxes = tf_concat(1, pred_boxes)
pred_logits = tf_concat(1, pred_logits)
pred_logits_squash = tf.reshape(pred_logits,
[outer_size * H['rnn_len'], H['num_classes']])
pred_confidences_squash = tf.nn.softmax(pred_logits_squash)
pred_confidences = tf.reshape(pred_confidences_squash,
[outer_size, H['rnn_len'], H['num_classes']])
if H['use_rezoom']:
pred_confs_deltas = []
pred_boxes_deltas = []
w_offsets = H['rezoom_w_coords']
h_offsets = H['rezoom_h_coords']
num_offsets = len(w_offsets) * len(h_offsets)
rezoom_features = rezoom(H, pred_boxes, early_feat, early_feat_channels, w_offsets, h_offsets)
if phase == 'train':
rezoom_features = tf.nn.dropout(rezoom_features, 0.5)
for k in range(H['rnn_len']):
delta_features = tf_concat(1, [lstm_outputs[k], rezoom_features[:, k, :] / 1000.])
dim = 128
delta_weights1 = tf.get_variable(
'delta_ip1%d' % k,
shape=[H['lstm_size'] + early_feat_channels * num_offsets, dim])
# TODO: add dropout here ?
ip1 = tf.nn.relu(tf.matmul(delta_features, delta_weights1))
if phase == 'train':
ip1 = tf.nn.dropout(ip1, 0.5)
delta_confs_weights = tf.get_variable(
'delta_ip2%d' % k,
shape=[dim, H['num_classes']])
if H['reregress']:
delta_boxes_weights = tf.get_variable(
'delta_ip_boxes%d' % k,
shape=[dim, 4])
pred_boxes_deltas.append(tf.reshape(tf.matmul(ip1, delta_boxes_weights) * 5,
[outer_size, 1, 4]))
scale = H.get('rezoom_conf_scale', 50)
pred_confs_deltas.append(tf.reshape(tf.matmul(ip1, delta_confs_weights) * scale,
[outer_size, 1, H['num_classes']]))
pred_confs_deltas = tf_concat(1, pred_confs_deltas)
if H['reregress']:
pred_boxes_deltas = tf_concat(1, pred_boxes_deltas)
return pred_boxes, pred_logits, pred_confidences, pred_confs_deltas, pred_boxes_deltas
return pred_boxes, pred_logits, pred_confidences
def build_forward_backward(H, x, phase, boxes, flags):
'''
Call build_forward() and then setup the loss functions
'''
grid_size = H['grid_width'] * H['grid_height']
outer_size = grid_size * H['batch_size']
reuse = {'train': None, 'test': True}[phase]
if H['use_rezoom']:
(pred_boxes, pred_logits,
pred_confidences, pred_confs_deltas, pred_boxes_deltas) = build_forward(H, x, phase, reuse)
else:
pred_boxes, pred_logits, pred_confidences = build_forward(H, x, phase, reuse)
with tf.variable_scope('decoder', reuse={'train': None, 'test': True}[phase]):
outer_boxes = tf.reshape(boxes, [outer_size, H['rnn_len'], 4])
outer_flags = tf.cast(tf.reshape(flags, [outer_size, H['rnn_len']]), 'int32')
if H['use_lstm']:
hungarian_module = tf.load_op_library('utils/hungarian/hungarian.so')
assignments, classes, perm_truth, pred_mask = (
hungarian_module.hungarian(pred_boxes, outer_boxes, outer_flags, H['solver']['hungarian_iou']))
else:
classes = tf.reshape(flags, (outer_size, 1))
perm_truth = tf.reshape(outer_boxes, (outer_size, 1, 4))
pred_mask = tf.reshape(tf.cast(tf.greater(classes, 0), 'float32'), (outer_size, 1, 1))
true_classes = tf.reshape(tf.cast(tf.greater(classes, 0), 'int64'),
[outer_size * H['rnn_len']])
pred_logit_r = tf.reshape(pred_logits,
[outer_size * H['rnn_len'], H['num_classes']])
confidences_loss = (tf.reduce_sum(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred_logit_r, labels=true_classes))
) / outer_size * H['solver']['head_weights'][0]
residual = tf.reshape(perm_truth - pred_boxes * pred_mask,
[outer_size, H['rnn_len'], 4])
boxes_loss = tf.reduce_sum(tf.abs(residual)) / outer_size * H['solver']['head_weights'][1]
if H['use_rezoom']:
if H['rezoom_change_loss'] == 'center':
error = (perm_truth[:, :, 0:2] - pred_boxes[:, :, 0:2]) / tf.maximum(perm_truth[:, :, 2:4], 1.)
square_error = tf.reduce_sum(tf.square(error), 2)
inside = tf.reshape(tf.to_int64(tf.logical_and(tf.less(square_error, 0.2**2), tf.greater(classes, 0))), [-1])
elif H['rezoom_change_loss'] == 'iou':
iou = train_utils.iou(train_utils.to_x1y1x2y2(tf.reshape(pred_boxes, [-1, 4])),
train_utils.to_x1y1x2y2(tf.reshape(perm_truth, [-1, 4])))
inside = tf.reshape(tf.to_int64(tf.greater(iou, 0.5)), [-1])
else:
assert H['rezoom_change_loss'] == False
inside = tf.reshape(tf.to_int64((tf.greater(classes, 0))), [-1])
new_confs = tf.reshape(pred_confs_deltas, [outer_size * H['rnn_len'], H['num_classes']])
delta_confs_loss = tf.reduce_sum(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=new_confs, labels=inside)) / outer_size * H['solver']['head_weights'][0] * 0.1
pred_logits_squash = tf.reshape(new_confs,
[outer_size * H['rnn_len'], H['num_classes']])
pred_confidences_squash = tf.nn.softmax(pred_logits_squash)
pred_confidences = tf.reshape(pred_confidences_squash,
[outer_size, H['rnn_len'], H['num_classes']])
loss = confidences_loss + boxes_loss + delta_confs_loss
if H['reregress']:
delta_residual = tf.reshape(perm_truth - (pred_boxes + pred_boxes_deltas) * pred_mask,
[outer_size, H['rnn_len'], 4])
delta_boxes_loss = (tf.reduce_sum(tf.minimum(tf.square(delta_residual), 10. ** 2)) /
outer_size * H['solver']['head_weights'][1] * 0.03)
boxes_loss = delta_boxes_loss
tf.summary.histogram(phase + '/delta_hist0_x', pred_boxes_deltas[:, 0, 0])
tf.summary.histogram(phase + '/delta_hist0_y', pred_boxes_deltas[:, 0, 1])
tf.summary.histogram(phase + '/delta_hist0_w', pred_boxes_deltas[:, 0, 2])
tf.summary.histogram(phase + '/delta_hist0_h', pred_boxes_deltas[:, 0, 3])
loss += delta_boxes_loss
else:
loss = confidences_loss + boxes_loss
return pred_boxes, pred_confidences, loss, confidences_loss, boxes_loss
def build(H, q):
'''
Build full model for training, including forward / backward passes,
optimizers, and summary statistics.
'''
arch = H
solver = H["solver"]
os.environ['CUDA_VISIBLE_DEVICES'] = str(solver.get('gpu', ''))
#gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
gpu_options = tf.GPUOptions()
config = tf.ConfigProto(gpu_options=gpu_options)
learning_rate = tf.placeholder(tf.float32)
if solver['opt'] == 'RMS':
opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate,
decay=0.9, epsilon=solver['epsilon'])
elif solver['opt'] == 'Adam':
opt = tf.train.AdamOptimizer(learning_rate=learning_rate,
epsilon=solver['epsilon'])
elif solver['opt'] == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
else:
raise ValueError('Unrecognized opt type')
loss, accuracy, confidences_loss, boxes_loss = {}, {}, {}, {}
for phase in ['train', 'test']:
# get ground truth data
x, confidences, boxes = q[phase].dequeue_many(arch['batch_size'])
flags = tf.argmax(confidences, 3)
# generate predictions and losses from forward pass
grid_size = H['grid_width'] * H['grid_height']
assert(H['num_classes'] == arch['num_classes'])
(pred_boxes, pred_confidences,
loss[phase], confidences_loss[phase],
boxes_loss[phase]) = build_forward_backward(H, x, phase, boxes, flags)
pred_confidences_r = tf.reshape(pred_confidences, [H['batch_size'], grid_size, H['rnn_len'], arch['num_classes']])
pred_boxes_r = tf.reshape(pred_boxes, [H['batch_size'], grid_size, H['rnn_len'], 4])
# Set up summary operations for tensorboard
a = tf.equal(tf.argmax(confidences, 3), tf.argmax(pred_confidences_r, 3))
accuracy[phase] = tf.reduce_mean(tf.cast(a, 'float32'), name=phase+'/accuracy')
if phase == 'train':
global_step = tf.Variable(0, trainable=False)
tvars = tf.trainable_variables()
if H['clip_norm'] <= 0:
grads = tf.gradients(loss['train'], tvars)
else:
grads, norm = tf.clip_by_global_norm(tf.gradients(loss['train'], tvars), H['clip_norm'])
train_op = opt.apply_gradients(zip(grads, tvars), global_step=global_step)
elif phase == 'test':
moving_avg = tf.train.ExponentialMovingAverage(0.95)
smooth_op = moving_avg.apply([accuracy['train'], accuracy['test'],
confidences_loss['train'], boxes_loss['train'],
confidences_loss['test'], boxes_loss['test'],
])
for p in ['train', 'test']:
tf.summary.scalar('%s/accuracy' % p, accuracy[p])
tf.summary.scalar('%s/accuracy/smooth' % p, moving_avg.average(accuracy[p]))
tf.summary.scalar("%s/confidences_loss" % p, confidences_loss[p])
tf.summary.scalar("%s/confidences_loss/smooth" % p,
moving_avg.average(confidences_loss[p]))
tf.summary.scalar("%s/regression_loss" % p, boxes_loss[p])
tf.summary.scalar("%s/regression_loss/smooth" % p,
moving_avg.average(boxes_loss[p]))
if phase == 'test':
test_image = x
# show ground truth to verify labels are correct
test_true_confidences = confidences[0, :, :, :]
test_true_boxes = boxes[0, :, :, :]
# show predictions to visualize training progress
test_pred_confidences = pred_confidences_r[0, :, :, :]
test_pred_boxes = pred_boxes_r[0, :, :, :]
def log_image(np_img, np_confidences, np_boxes, np_global_step, pred_or_true):
merged = train_utils.add_rectangles(H, np_img, np_confidences, np_boxes,
use_stitching=True,
rnn_len=H['rnn_len'])[0]
num_images = 10
img_path = os.path.join(H['save_dir'], '%s_%s.jpg' % ((np_global_step / H['logging']['display_iter']) % num_images, pred_or_true))
misc.imsave(img_path, merged)
return merged
pred_log_img = tf.py_func(log_image,
[test_image, test_pred_confidences, test_pred_boxes, global_step, 'pred'],
[tf.float32])
true_log_img = tf.py_func(log_image,
[test_image, test_true_confidences, test_true_boxes, global_step, 'true'],
[tf.float32])
tf.summary.image(phase + '/pred_boxes', pred_log_img, max_outputs=10)
tf.summary.image(phase + '/true_boxes', true_log_img, max_outputs=10)
summary_op = tf.summary.merge_all()
return (config, loss, accuracy, summary_op, train_op,
smooth_op, global_step, learning_rate)
def train(H, test_images):
'''
Setup computation graph, run 2 prefetch data threads, and then run the main loop
'''
if not os.path.exists(H['save_dir']): os.makedirs(H['save_dir'])
ckpt_file = H['save_dir'] + '/save.ckpt'
with open(H['save_dir'] + '/hypes.json', 'w') as f:
json.dump(H, f, indent=4)
x_in = tf.placeholder(tf.float32)
confs_in = tf.placeholder(tf.float32)
boxes_in = tf.placeholder(tf.float32)
q = {}
enqueue_op = {}
for phase in ['train', 'test']:
dtypes = [tf.float32, tf.float32, tf.float32]
grid_size = H['grid_width'] * H['grid_height']
shapes = (
[H['image_height'], H['image_width'], 3],
[grid_size, H['rnn_len'], H['num_classes']],
[grid_size, H['rnn_len'], 4],
)
q[phase] = tf.FIFOQueue(capacity=30, dtypes=dtypes, shapes=shapes)
enqueue_op[phase] = q[phase].enqueue((x_in, confs_in, boxes_in))
def make_feed(d):
return {x_in: d['image'], confs_in: d['confs'], boxes_in: d['boxes'],
learning_rate: H['solver']['learning_rate']}
def thread_loop(sess, enqueue_op, phase, gen):
for d in gen:
sess.run(enqueue_op[phase], feed_dict=make_feed(d))
(config, loss, accuracy, summary_op, train_op,
smooth_op, global_step, learning_rate) = build(H, q)
saver = tf.train.Saver(max_to_keep=None)
writer = tf.summary.FileWriter(
logdir=H['save_dir'],
flush_secs=10
)
with tf.Session(config=config) as sess:
tf.train.start_queue_runners(sess=sess)
for phase in ['train', 'test']:
# enqueue once manually to avoid thread start delay
gen = train_utils.load_data_gen(H, phase, jitter=H['solver']['use_jitter'])
d = gen.next()
sess.run(enqueue_op[phase], feed_dict=make_feed(d))
t = threading.Thread(target=thread_loop,
args=(sess, enqueue_op, phase, gen))
t.daemon = True
t.start()
tf.set_random_seed(H['solver']['rnd_seed'])
sess.run(tf.global_variables_initializer())
writer.add_graph(sess.graph)
weights_str = H['solver']['weights']
if len(weights_str) > 0:
print('Restoring from: %s' % weights_str)
saver.restore(sess, weights_str)
else:
init_fn = slim.assign_from_checkpoint_fn(
'%s/data/%s' % (os.path.dirname(os.path.realpath(__file__)), H['slim_ckpt']),
[x for x in tf.global_variables() if x.name.startswith(H['slim_basename']) and H['solver']['opt'] not in x.name])
#init_fn = slim.assign_from_checkpoint_fn(
#'%s/data/inception_v1.ckpt' % os.path.dirname(os.path.realpath(__file__)),
#[x for x in tf.global_variables() if x.name.startswith('InceptionV1') and not H['solver']['opt'] in x.name])
init_fn(sess)
# train model for N iterations
start = time.time()
max_iter = H['solver'].get('max_iter', 10000000)
for i in xrange(max_iter):
display_iter = H['logging']['display_iter']
adjusted_lr = (H['solver']['learning_rate'] *
0.5 ** max(0, (i / H['solver']['learning_rate_step']) - 2))
lr_feed = {learning_rate: adjusted_lr}
if i % display_iter != 0:
# train network
batch_loss_train, _ = sess.run([loss['train'], train_op], feed_dict=lr_feed)
else:
# test network every N iterations; log additional info
if i > 0:
dt = (time.time() - start) / (H['batch_size'] * display_iter)
start = time.time()
(train_loss, test_accuracy, summary_str,
_, _) = sess.run([loss['train'], accuracy['test'],
summary_op, train_op, smooth_op,
], feed_dict=lr_feed)
writer.add_summary(summary_str, global_step=global_step.eval())
print_str = string.join([
'Step: %d',
'lr: %f',
'Train Loss: %.2f',
'Softmax Test Accuracy: %.1f%%',
'Time/image (ms): %.1f'
], ', ')
print(print_str %
(i, adjusted_lr, train_loss,
test_accuracy * 100, dt * 1000 if i > 0 else 0))
if global_step.eval() % H['logging']['save_iter'] == 0 or global_step.eval() == max_iter - 1:
saver.save(sess, ckpt_file, global_step=global_step)
def main():
'''
Parse command line arguments and return the hyperparameter dictionary H.
H first loads the --hypes hypes.json file and is further updated with
additional arguments as needed.
'''
parser = argparse.ArgumentParser()
parser.add_argument('--weights', default=None, type=str)
parser.add_argument('--gpu', default=None, type=int)
parser.add_argument('--hypes', required=True, type=str)
parser.add_argument('--max_iter', required=False, type=int, default=None)
parser.add_argument('--logdir', default='output', type=str)
args = parser.parse_args()
with open(args.hypes, 'r') as f:
H = json.load(f)
if args.gpu is not None:
H['solver']['gpu'] = args.gpu
if args.max_iter is not None:
H['solver']['max_iter'] = args.max_iter
if len(H.get('exp_name', '')) == 0:
H['exp_name'] = args.hypes.split('/')[-1].replace('.json', '')
H['save_dir'] = args.logdir + '/%s_%s' % (H['exp_name'],
datetime.datetime.now().strftime('%Y_%m_%d_%H.%M'))
if args.weights is not None:
H['solver']['weights'] = args.weights
train(H, test_images=[])
if __name__ == '__main__':
main()