-
Notifications
You must be signed in to change notification settings - Fork 17
/
utilities.py
489 lines (398 loc) · 19.2 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os, sys
import random
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from tqdm.auto import tqdm
from matplotlib.animation import FuncAnimation, PillowWriter
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision.utils import make_grid, save_image
def get_device():
"Pick GPU if cuda is available, mps if Mac, else CPU"
if torch.cuda.is_available():
return torch.device("cuda")
elif sys.platform == "darwin" and torch.backends.mps.is_available():
return torch.device("mps")
else:
return torch.device("cpu")
def _fig_bounds(x):
r = x//32
return min(5, max(1,r))
def show_image(im, ax=None, figsize=None, title=None, **kwargs):
"Show a PIL or PyTorch image on `ax`."
cmap=None
# Handle pytorch axis order
if isinstance(im, torch.Tensor):
im = im.data.cpu()
if im.shape[0]<5: im=im.permute(1,2,0)
elif not isinstance(im, np.ndarray):
im=np.array(im)
# Handle 1-channel images
if im.shape[-1]==1:
cmap = "gray"
im=im[...,0]
if figsize is None:
figsize = (_fig_bounds(im.shape[0]), _fig_bounds(im.shape[1]))
if ax is None:
_,ax = plt.subplots(figsize=figsize)
ax.imshow(im, cmap=cmap, **kwargs)
if title is not None:
ax.set_title(title)
ax.axis('off')
return ax
class ContextUnet(nn.Module):
def __init__(self, in_channels, n_feat=256, n_cfeat=10, height=28): # cfeat - context features
super(ContextUnet, self).__init__()
# number of input channels, number of intermediate feature maps and number of classes
self.in_channels = in_channels
self.n_feat = n_feat
self.n_cfeat = n_cfeat
self.h = height #assume h == w. must be divisible by 4, so 28,24,20,16...
# Initialize the initial convolutional layer
self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
# Initialize the down-sampling path of the U-Net with two levels
self.down1 = UnetDown(n_feat, n_feat) # down1 #[10, 256, 8, 8]
self.down2 = UnetDown(n_feat, 2 * n_feat) # down2 #[10, 256, 4, 4]
# original: self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
self.to_vec = nn.Sequential(nn.AvgPool2d((4)), nn.GELU())
# Embed the timestep and context labels with a one-layer fully connected neural network
self.timeembed1 = EmbedFC(1, 2*n_feat)
self.timeembed2 = EmbedFC(1, 1*n_feat)
self.contextembed1 = EmbedFC(n_cfeat, 2*n_feat)
self.contextembed2 = EmbedFC(n_cfeat, 1*n_feat)
# Initialize the up-sampling path of the U-Net with three levels
self.up0 = nn.Sequential(
nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, self.h//4, self.h//4), # up-sample
nn.GroupNorm(8, 2 * n_feat), # normalize
nn.ReLU(),
)
self.up1 = UnetUp(4 * n_feat, n_feat)
self.up2 = UnetUp(2 * n_feat, n_feat)
# Initialize the final convolutional layers to map to the same number of channels as the input image
self.out = nn.Sequential(
nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1), # reduce number of feature maps #in_channels, out_channels, kernel_size, stride=1, padding=0
nn.GroupNorm(8, n_feat), # normalize
nn.ReLU(),
nn.Conv2d(n_feat, self.in_channels, 3, 1, 1), # map to same number of channels as input
)
def forward(self, x, t, c=None):
"""
x : (batch, n_feat, h, w) : input image
t : (batch, n_cfeat) : time step
c : (batch, n_classes) : context label
"""
# x is the input image, c is the context label, t is the timestep, context_mask says which samples to block the context on
# pass the input image through the initial convolutional layer
x = self.init_conv(x)
# pass the result through the down-sampling path
down1 = self.down1(x) #[10, 256, 8, 8]
down2 = self.down2(down1) #[10, 256, 4, 4]
# convert the feature maps to a vector and apply an activation
hiddenvec = self.to_vec(down2)
# mask out context if context_mask == 1
if c is None:
c = torch.zeros(x.shape[0], self.n_cfeat).to(x)
# embed context and timestep
cemb1 = self.contextembed1(c).view(-1, self.n_feat * 2, 1, 1) # (batch, 2*n_feat, 1,1)
temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
cemb2 = self.contextembed2(c).view(-1, self.n_feat, 1, 1)
temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
#print(f"uunet forward: cemb1 {cemb1.shape}. temb1 {temb1.shape}, cemb2 {cemb2.shape}. temb2 {temb2.shape}")
up1 = self.up0(hiddenvec)
up2 = self.up1(cemb1*up1 + temb1, down2) # add and multiply embeddings
up3 = self.up2(cemb2*up2 + temb2, down1)
out = self.out(torch.cat((up3, x), 1))
return out
class ResidualConvBlock(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, is_res: bool = False
) -> None:
super().__init__()
# Check if input and output channels are the same for the residual connection
self.same_channels = in_channels == out_channels
# Flag for whether or not to use residual connection
self.is_res = is_res
# First convolutional layer
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1), # 3x3 kernel with stride 1 and padding 1
nn.BatchNorm2d(out_channels), # Batch normalization
nn.GELU(), # GELU activation function
)
# Second convolutional layer
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1), # 3x3 kernel with stride 1 and padding 1
nn.BatchNorm2d(out_channels), # Batch normalization
nn.GELU(), # GELU activation function
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# If using residual connection
if self.is_res:
# Apply first convolutional layer
x1 = self.conv1(x)
# Apply second convolutional layer
x2 = self.conv2(x1)
# If input and output channels are the same, add residual connection directly
if self.same_channels:
out = x + x2
else:
# If not, apply a 1x1 convolutional layer to match dimensions before adding residual connection
shortcut = nn.Conv2d(x.shape[1], x2.shape[1], kernel_size=1, stride=1, padding=0).to(x.device)
out = shortcut(x) + x2
#print(f"resconv forward: x {x.shape}, x1 {x1.shape}, x2 {x2.shape}, out {out.shape}")
# Normalize output tensor
return out / 1.414
# If not using residual connection, return output of second convolutional layer
else:
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x2
# Method to get the number of output channels for this block
def get_out_channels(self):
return self.conv2[0].out_channels
# Method to set the number of output channels for this block
def set_out_channels(self, out_channels):
self.conv1[0].out_channels = out_channels
self.conv2[0].in_channels = out_channels
self.conv2[0].out_channels = out_channels
class UnetUp(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetUp, self).__init__()
# Create a list of layers for the upsampling block
# The block consists of a ConvTranspose2d layer for upsampling, followed by two ResidualConvBlock layers
layers = [
nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
ResidualConvBlock(out_channels, out_channels),
ResidualConvBlock(out_channels, out_channels),
]
# Use the layers to create a sequential model
self.model = nn.Sequential(*layers)
def forward(self, x, skip):
# Concatenate the input tensor x with the skip connection tensor along the channel dimension
x = torch.cat((x, skip), 1)
# Pass the concatenated tensor through the sequential model and return the output
x = self.model(x)
return x
class UnetDown(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetDown, self).__init__()
# Create a list of layers for the downsampling block
# Each block consists of two ResidualConvBlock layers, followed by a MaxPool2d layer for downsampling
layers = [ResidualConvBlock(in_channels, out_channels), ResidualConvBlock(out_channels, out_channels), nn.MaxPool2d(2)]
# Use the layers to create a sequential model
self.model = nn.Sequential(*layers)
def forward(self, x):
# Pass the input through the sequential model and return the output
return self.model(x)
class EmbedFC(nn.Module):
def __init__(self, input_dim, emb_dim):
super(EmbedFC, self).__init__()
'''
This class defines a generic one layer feed-forward neural network for embedding input data of
dimensionality input_dim to an embedding space of dimensionality emb_dim.
'''
self.input_dim = input_dim
# define the layers for the network
layers = [
nn.Linear(input_dim, emb_dim),
nn.GELU(),
nn.Linear(emb_dim, emb_dim),
]
# create a PyTorch sequential model consisting of the defined layers
self.model = nn.Sequential(*layers)
def forward(self, x):
# flatten the input tensor
x = x.view(-1, self.input_dim)
# apply the model layers to the flattened tensor
return self.model(x)
def unorm(x):
# unity norm. results in range of [0,1]
# assume x (h,w,3)
xmax = x.max((0,1))
xmin = x.min((0,1))
return(x - xmin)/(xmax - xmin)
def norm_all(store, n_t, n_s):
# runs unity norm on all timesteps of all samples
nstore = np.zeros_like(store)
for t in range(n_t):
for s in range(n_s):
nstore[t,s] = unorm(store[t,s])
return nstore
def norm_torch(x_all):
# runs unity norm on all timesteps of all samples
# input is (n_samples, 3,h,w), the torch image format
x = x_all.cpu().numpy()
xmax = x.max((2,3))
xmin = x.min((2,3))
xmax = np.expand_dims(xmax,(2,3))
xmin = np.expand_dims(xmin,(2,3))
nstore = (x - xmin)/(xmax - xmin)
return torch.from_numpy(nstore)
def gen_tst_context(n_cfeat):
"""
Generate test context vectors
"""
vec = torch.tensor([
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0]] # human, non-human, food, spell, side-facing
)
return len(vec), vec
def plot_grid(x,n_sample,n_rows,save_dir,w):
# x:(n_sample, 3, h, w)
ncols = n_sample//n_rows
grid = make_grid(norm_torch(x), nrow=ncols) # curiously, nrow is number of columns.. or number of items in the row.
save_image(grid, save_dir + f"run_image_w{w}.png")
print('saved image at ' + save_dir + f"run_image_w{w}.png")
return grid
def plot_sample(x_gen_store,n_sample,nrows,save_dir, fn, w, save=False):
ncols = n_sample//nrows
sx_gen_store = np.moveaxis(x_gen_store,2,4) # change to Numpy image format (h,w,channels) vs (channels,h,w)
nsx_gen_store = norm_all(sx_gen_store, sx_gen_store.shape[0], n_sample) # unity norm to put in range [0,1] for np.imshow
# create gif of images evolving over time, based on x_gen_store
fig, axs = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, sharey=True,figsize=(ncols,nrows))
def animate_diff(i, store):
print(f'gif animating frame {i} of {store.shape[0]}', end='\r')
plots = []
for row in range(nrows):
for col in range(ncols):
axs[row, col].clear()
axs[row, col].set_xticks([])
axs[row, col].set_yticks([])
plots.append(axs[row, col].imshow(store[i,(row*ncols)+col]))
return plots
ani = FuncAnimation(fig, animate_diff, fargs=[nsx_gen_store], interval=200, blit=False, repeat=True, frames=nsx_gen_store.shape[0])
plt.close()
if save:
ani.save(save_dir + f"{fn}_w{w}.gif", dpi=100, writer=PillowWriter(fps=5))
print('saved gif at ' + save_dir + f"{fn}_w{w}.gif")
return ani
default_tfms = transforms.Compose([
transforms.ToTensor(), # from [0,255] to range [0.0,1.0]
transforms.RandomHorizontalFlip(), # randomly flip and rotate
transforms.Normalize((0.5,), (0.5,)) # range [-1,1]
])
class CustomDataset(Dataset):
def __init__(self, sprites, slabels, transform=default_tfms, null_context=False, argmax=False):
self.sprites = sprites
if argmax:
self.slabels = np.argmax(slabels, axis=1)
else:
self.slabels = slabels
self.transform = transform
self.null_context = null_context
@classmethod
def from_np(cls,
path,
sfilename="sprites_1788_16x16.npy", lfilename="sprite_labels_nc_1788_16x16.npy", transform=default_tfms, null_context=False, argmax=False):
sprites = np.load(Path(path)/sfilename)
slabels = np.load(Path(path)/lfilename)
return cls(sprites, slabels, transform, null_context, argmax)
# Return the number of images in the dataset
def __len__(self):
return len(self.sprites)
# Get the image and label at a given index
def __getitem__(self, idx):
# Return the image and label as a tuple
if self.transform:
image = self.transform(self.sprites[idx])
if self.null_context:
label = torch.tensor(0).to(torch.int64)
else:
label = torch.tensor(self.slabels[idx]).to(torch.int64)
return (image, label)
def subset(self, slice_size=1000):
# return a subset of the dataset
indices = random.sample(range(len(self)), slice_size)
return CustomDataset(self.sprites[indices], self.slabels[indices], self.transform, self.null_context)
def split(self, pct=0.2):
"split dataset into train and test"
train_size = int((1-pct)*len(self))
test_size = len(self) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(self, [train_size, test_size])
return train_dataset, test_dataset
def get_dataloaders(data_dir, batch_size, slice_size=None, valid_pct=0.2):
"Get train/val dataloaders for classification on sprites dataset"
dataset = CustomDataset.from_np(Path(data_dir), argmax=True)
if slice_size:
dataset = dataset.subset(slice_size)
train_ds, valid_ds = dataset.split(valid_pct)
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=1)
valid_dl = DataLoader(valid_ds, batch_size=batch_size, shuffle=False, num_workers=1)
return train_dl, valid_dl
## diffusion functions
def setup_ddpm(beta1, beta2, timesteps, device):
# construct DDPM noise schedule and sampling functions
b_t = (beta2 - beta1) * torch.linspace(0, 1, timesteps + 1, device=device) + beta1
a_t = 1 - b_t
ab_t = torch.cumsum(a_t.log(), dim=0).exp()
ab_t[0] = 1
# helper function: perturbs an image to a specified noise level
def perturb_input(x, t, noise):
return ab_t.sqrt()[t, None, None, None] * x + (1 - ab_t[t, None, None, None]) * noise
# helper function; removes the predicted noise (but adds some noise back in to avoid collapse)
def _denoise_add_noise(x, t, pred_noise, z=None):
if z is None:
z = torch.randn_like(x)
noise = b_t.sqrt()[t] * z
mean = (x - pred_noise * ((1 - a_t[t]) / (1 - ab_t[t]).sqrt())) / a_t[t].sqrt()
return mean + noise
# sample with context using standard algorithm
# we make a change to the original algorithm to allow for context explicitely (the noises)
@torch.no_grad()
def sample_ddpm_context(nn_model, noises, context, save_rate=20):
# array to keep track of generated steps for plotting
intermediate = []
pbar = tqdm(range(timesteps, 0, -1), leave=False)
for i in pbar:
pbar.set_description(f'sampling timestep {i:3d}')
# reshape time tensor
t = torch.tensor([i / timesteps])[:, None, None, None].to(noises.device)
# sample some random noise to inject back in. For i = 1, don't add back in noise
z = torch.randn_like(noises) if i > 1 else 0
eps = nn_model(noises, t, c=context) # predict noise e_(x_t,t, ctx)
noises = _denoise_add_noise(noises, i, eps, z)
if i % save_rate==0 or i==timesteps or i<8:
intermediate.append(noises.detach().cpu().numpy())
intermediate = np.stack(intermediate)
return noises.clip(-1, 1), intermediate
return perturb_input, sample_ddpm_context
def setup_ddim(beta1, beta2, timesteps, device):
# define sampling function for DDIM
b_t = (beta2 - beta1) * torch.linspace(0, 1, timesteps + 1, device=device) + beta1
a_t = 1 - b_t
ab_t = torch.cumsum(a_t.log(), dim=0).exp()
ab_t[0] = 1
# removes the noise using ddim
def denoise_ddim(x, t, t_prev, pred_noise):
ab = ab_t[t]
ab_prev = ab_t[t_prev]
x0_pred = ab_prev.sqrt() / ab.sqrt() * (x - (1 - ab).sqrt() * pred_noise)
dir_xt = (1 - ab_prev).sqrt() * pred_noise
return x0_pred + dir_xt
# fast sampling algorithm with context
@torch.no_grad()
def sample_ddim_context(nn_model, noises, context, n=25):
# array to keep track of generated steps for plotting
intermediate = []
step_size = timesteps // n
pbar=tqdm(range(timesteps, 0, -step_size), leave=False)
for i in pbar:
pbar.set_description(f'sampling timestep {i:3d}')
# reshape time tensor
t = torch.tensor([i / timesteps])[:, None, None, None].to(device)
eps = nn_model(noises, t, c=context) # predict noise e_(x_t,t)
noises = denoise_ddim(noises, i, i - step_size, eps)
intermediate.append(noises.detach().cpu().numpy())
intermediate = np.stack(intermediate)
return noises.clip(-1, 1), intermediate
return sample_ddim_context
def to_classes(ctx_vector):
classes = "hero,non-hero,food,spell,side-facing".split(",")
return [classes[i] for i in ctx_vector.argmax(dim=1)]