-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo.py
executable file
·641 lines (519 loc) · 22.7 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import argparse
import os
import random
from collections import defaultdict
import cv2
import re
import numpy as np
from PIL import Image
import torch
import html
import gradio as gr
import torchvision.transforms as T
import torch.backends.cudnn as cudnn
from vlm4hoi.common.config import Config
from vlm4hoi.common.registry import registry
from vlm4hoi.conversation.conversation import Conversation, SeparatorStyle, Chat
# imports modules for registration
from vlm4hoi.datasets.builders import *
from vlm4hoi.models import *
from vlm4hoi.processors import *
from vlm4hoi.runners import *
from vlm4hoi.tasks import *
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", default='eval_configs/vlm4hoi_eval.yaml',
help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
cudnn.benchmark = False
cudnn.deterministic = True
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
device = 'cuda:{}'.format(args.gpu_id)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(device)
bounding_box_size = 100
vis_processor_cfg = cfg.datasets_cfg.epic_conversation.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
model = model.eval()
CONV_VISION = Conversation(
system="",
roles=(r"<s>[INST] ", r" [/INST]"),
messages=[],
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="",
)
def extract_substrings(string):
# first check if there is no-finished bracket
index = string.rfind('}')
if index != -1:
string = string[:index + 1]
pattern = r'<p>(.*?)\}(?!<)'
matches = re.findall(pattern, string)
substrings = [match for match in matches]
return substrings
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def computeIoU(bbox1, bbox2):
x1, y1, x2, y2 = bbox1
x3, y3, x4, y4 = bbox2
intersection_x1 = max(x1, x3)
intersection_y1 = max(y1, y3)
intersection_x2 = min(x2, x4)
intersection_y2 = min(y2, y4)
intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1)
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
union_area = bbox1_area + bbox2_area - intersection_area
iou = intersection_area / union_area
return iou
def save_tmp_img(visual_img):
file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg"
file_path = "/tmp/gradio" + file_name
visual_img.save(file_path)
return file_path
def mask2bbox(mask):
if mask is None:
return ''
mask = mask.resize([100, 100], resample=Image.NEAREST)
mask = np.array(mask)[:, :, 0]
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
if rows.sum():
# Get the top, bottom, left, and right boundaries
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax)
else:
bbox = ''
return bbox
def escape_markdown(text):
# List of Markdown special characters that need to be escaped
md_chars = ['<', '>']
# Escape each special character
for char in md_chars:
text = text.replace(char, '\\' + char)
return text
def reverse_escape(text):
md_chars = ['\\<', '\\>']
for char in md_chars:
text = text.replace(char, char[1:])
return text
colors = [
(255, 0, 0),
(0, 255, 0),
(0, 0, 255),
(210, 210, 0),
(255, 0, 255),
(0, 255, 255),
(114, 128, 250),
(0, 165, 255),
(0, 128, 0),
(144, 238, 144),
(238, 238, 175),
(255, 191, 0),
(0, 128, 0),
(226, 43, 138),
(255, 0, 255),
(0, 215, 255),
]
color_map = {
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for
color_id, color in enumerate(colors)
}
used_colors = colors
def visualize_all_bbox_together(image, generation):
if image is None:
return None, ''
generation = html.unescape(generation)
image_width, image_height = image.size
image = image.resize([500, int(500 / image_width * image_height)])
image_width, image_height = image.size
string_list = extract_substrings(generation)
if string_list: # it is grounding or detection
mode = 'all'
entities = defaultdict(list)
i = 0
j = 0
for string in string_list:
try:
obj, string = string.split('</p>')
except ValueError:
print('wrong string: ', string)
continue
bbox_list = string.split('<delim>')
flag = False
for bbox_string in bbox_list:
integers = re.findall(r'-?\d+', bbox_string)
if len(integers) == 4:
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
left = x0 / bounding_box_size * image_width
bottom = y0 / bounding_box_size * image_height
right = x1 / bounding_box_size * image_width
top = y1 / bounding_box_size * image_height
entities[obj].append([left, bottom, right, top])
j += 1
flag = True
if flag:
i += 1
else:
integers = re.findall(r'-?\d+', generation)
if len(integers) == 4: # it is refer
mode = 'single'
entities = list()
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
left = x0 / bounding_box_size * image_width
bottom = y0 / bounding_box_size * image_height
right = x1 / bounding_box_size * image_width
top = y1 / bounding_box_size * image_height
entities.append([left, bottom, right, top])
else:
# don't detect any valid bbox to visualize
return None, ''
if len(entities) == 0:
return None, ''
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")
indices = list(range(len(entities)))
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 0.5
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 2
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 2
# num_bboxes = sum(len(x[-1]) for x in entities)
used_colors = colors # random.sample(colors, k=num_bboxes)
color_id = -1
for entity_idx, entity_name in enumerate(entities):
if mode == 'single' or mode == 'identify':
bboxes = entity_name
bboxes = [bboxes]
else:
bboxes = entities[entity_name]
color_id += 1
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
skip_flag = False
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm)
color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
if mode == 'all':
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size,
text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (
text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \
prev_bbox['phrase'] == entity_name:
skip_flag = True
break
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
if not skip_flag:
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(
np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces),
cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
previous_bboxes.append(
{'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name})
if mode == 'all':
def color_iterator(colors):
while True:
for color in colors:
yield color
color_gen = color_iterator(colors)
# Add colors to phrases and remove <p></p>
def colored_phrases(match):
phrase = match.group(1)
color = next(color_gen)
return f'<span style="color:rgb{color}">{phrase}</span>'
generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation)
generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation)
else:
generation_colored = ''
pil_image = Image.fromarray(new_image)
return pil_image, generation_colored
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat',
interactive=True), chat_state, img_list
def image_upload_trigger(upload_flag, replace_flag, img_list):
# set the upload flag to true when receive a new image.
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
upload_flag = 1
if img_list:
replace_flag = 1
return upload_flag, replace_flag
def example_trigger(text_input, image, upload_flag, replace_flag, img_list):
# set the upload flag to true when receive a new image.
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
upload_flag = 1
if img_list or replace_flag == 1:
replace_flag = 1
return upload_flag, replace_flag
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag):
if len(user_message) == 0:
text_box_show = 'Input should not be empty!'
else:
text_box_show = ''
if isinstance(gr_img, dict):
gr_img, mask = gr_img['image'], gr_img['mask']
else:
mask = None
if '[identify]' in user_message:
# check if user provide bbox in the text input
integers = re.findall(r'-?\d+', user_message)
if len(integers) != 4: # no bbox in text
bbox = mask2bbox(mask)
user_message = user_message + bbox
if chat_state is None:
chat_state = CONV_VISION.copy()
if upload_flag:
if replace_flag:
chat_state = CONV_VISION.copy() # new image, reset everything
replace_flag = 0
chatbot = []
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
upload_flag = 0
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
if '[identify]' in user_message:
visual_img, _ = visualize_all_bbox_together(gr_img, user_message)
if visual_img is not None:
file_path = save_tmp_img(visual_img)
chatbot = chatbot + [[(file_path,), None]]
return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag
def gradio_answer(chatbot, chat_state, img_list, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
temperature=temperature,
max_new_tokens=500,
max_length=2000)[0]
chatbot[-1][1] = llm_message
return chatbot, chat_state
def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
if len(img_list) > 0:
if not isinstance(img_list[0], torch.Tensor):
chat.encode_img(img_list)
streamer = chat.stream_answer(conv=chat_state,
img_list=img_list,
temperature=temperature,
max_new_tokens=500,
max_length=2000)
output = ''
for new_output in streamer:
escapped = escape_markdown(new_output)
output += escapped
chatbot[-1][1] = output
yield chatbot, chat_state
chat_state.messages[-1][1] = '</s>'
return chatbot, chat_state
def gradio_visualize(chatbot, gr_img):
if isinstance(gr_img, dict):
gr_img, mask = gr_img['image'], gr_img['mask']
unescaped = reverse_escape(chatbot[-1][1])
visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped)
if visual_img is not None:
if len(generation_color):
chatbot[-1][1] = generation_color
file_path = save_tmp_img(visual_img)
chatbot = chatbot + [[None, (file_path,)]]
return chatbot
def gradio_taskselect(idx):
prompt_list = [
'[grounding] Describe the ongoing action in this image',
'[refer] ',
'[detection] ',
'[identify] what is this ',
'[vqa] '
]
instruct_list = [
'**Hint:** Send the command to generate a grounded image description',
'**Hint:** Type in a phrase about an object in the image and send the command',
'**Hint:** Type in a caption or phrase, and see object locations in the image',
'**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw',
'**Hint:** Send a question to get a short answer',
]
return prompt_list[idx], instruct_list[idx]
chat = Chat(model, vis_processor, device=device)
title = """<h1 align="center">VLM4HOI Demo</h1>"""
description = 'Welcome to Our VLM4HOI Demo!'
# TODO: Add link to our webpage and then uncomment this line
# article = """<p><a href=''><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""
introduction = '''
VLM4HOI enables hand object interaction referral in images from egocentric videos. Use the following __task tags__ to interact with the model:
1. Grounding: Generate a grounded image description around the action happening in the image.
2. Refer: As about hand object relationship. For example, "[refer] which hand is holding the __object name__ in".
3. Detection: Give an object's name as input and the model will generate its location in the image.
4. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the name of the object under the bounding box. (CLICK "clear" button before re-drawing next time).
5. VQA: Ask a visual question to the model. For example, "[vqa] What is the object in the left/right hand of the person?"
'''
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False,
scale=8)
with gr.Blocks() as demo:
gr.Markdown(title)
# gr.Markdown(description)
# TODO: Will add the article link after the project page is up
# gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil", tool='sketch', brush_radius=20)
temperature = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.6,
step=0.1,
interactive=True,
label="Temperature",
)
clear = gr.Button("Restart")
gr.Markdown(introduction)
with gr.Column():
chat_state = gr.State(value=None)
img_list = gr.State(value=[])
chatbot = gr.Chatbot(label='VLM4HOI')
dataset = gr.Dataset(
components=[gr.Textbox(visible=False)],
samples=[['Grounding'], ['Refer'], ['Detection'], ['Identify'], ['VQA']],
type="index",
label='Task Tags',
)
task_inst = gr.Markdown('Upload your image from an egocentric video and chat')
with gr.Row():
text_input.render()
send = gr.Button("Send", variant='primary', size='sm', scale=1)
upload_flag = gr.State(value=0)
replace_flag = gr.State(value=0)
image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag])
with gr.Row():
with gr.Column():
gr.Examples(examples=[
["examples/frame_0000108904.jpg", "[refer] where is the left hand of the person", upload_flag, replace_flag, img_list],
["examples/frame_0000006305.jpg", "[vqa] what is in the right hand of the person", upload_flag, replace_flag, img_list],
["examples/frame_0000002150.jpg", "[refer] Which hand has the supplement box", upload_flag, replace_flag,
img_list],
["examples/videoframe_29225.png", "[refer] left hand", upload_flag,
replace_flag, img_list],
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
outputs=[upload_flag, replace_flag])
with gr.Column():
gr.Examples(examples=[
["examples/videoframe_377388.png", "[identify] what is this {<1><46><42><87>}",
upload_flag, replace_flag, img_list],
["examples/videoframe_1032599.png", "[refer] locate the object being manipuated", upload_flag, replace_flag, img_list],
["examples/videoframe_55236.png", "[detection] shoes", upload_flag, replace_flag, img_list],
["examples/videoframe_394773.png", "[refer] locate the object being manipulated by left hand", upload_flag,
replace_flag, img_list],
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
outputs=[upload_flag, replace_flag])
dataset.click(
gradio_taskselect,
inputs=[dataset],
outputs=[text_input, task_inst],
show_progress="hidden",
postprocess=False,
queue=False,
)
text_input.submit(
gradio_ask,
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
).success(
gradio_stream_answer,
[chatbot, chat_state, img_list, temperature],
[chatbot, chat_state]
).success(
gradio_visualize,
[chatbot, image],
[chatbot],
queue=False,
)
send.click(
gradio_ask,
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
).success(
gradio_stream_answer,
[chatbot, chat_state, img_list, temperature],
[chatbot, chat_state]
).success(
gradio_visualize,
[chatbot, image],
[chatbot],
queue=False,
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False)
demo.launch(share=True, enable_queue=True)