forked from opensourceware/Neural-ParsCit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
414 lines (376 loc) · 15.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
import re
import numpy as np
import scipy.io
import theano
import theano.tensor as T
import codecs
import cPickle
import gensim
from utils import shared, set_values, get_name
from nn import HiddenLayer, EmbeddingLayer, DropoutLayer, LSTM, forward
from optimization import Optimization
class Model(object):
"""
Network architecture.
"""
def __init__(self, parameters=None, models_path=None, model_path=None):
"""
Initialize the model. We either provide the parameters and a path where
we store the models, or the location of a trained model.
"""
if model_path is None:
assert parameters and models_path
# Create a name based on the parameters
self.parameters = parameters
self.name = get_name(parameters)
# Model location
model_path = os.path.join(models_path, self.name)
self.model_path = model_path
self.parameters_path = os.path.join(model_path, 'parameters.pkl')
self.mappings_path = os.path.join(model_path, 'mappings.pkl')
# Create directory for the model if it does not exist
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
# Save the parameters to disk
with open(self.parameters_path, 'wb') as f:
cPickle.dump(parameters, f)
else:
assert parameters is None and models_path is None
# Model location
self.model_path = model_path
self.parameters_path = os.path.join(model_path, 'parameters.pkl')
self.mappings_path = os.path.join(model_path, 'mappings.pkl')
# Load the parameters and the mappings from disk
with open(self.parameters_path, 'rb') as f:
self.parameters = cPickle.load(f)
self.reload_mappings()
self.components = {}
def save_mappings(self, id_to_word, id_to_char, id_to_tag):
"""
We need to save the mappings if we want to use the model later.
"""
self.id_to_word = id_to_word
self.id_to_char = id_to_char
self.id_to_tag = id_to_tag
with open(self.mappings_path, 'wb') as f:
mappings = {
'id_to_word': self.id_to_word,
'id_to_char': self.id_to_char,
'id_to_tag': self.id_to_tag,
}
cPickle.dump(mappings, f)
def reload_mappings(self):
"""
Load mappings from disk.
"""
with open(self.mappings_path, 'rb') as f:
mappings = cPickle.load(f)
self.id_to_word = mappings['id_to_word']
self.id_to_char = mappings['id_to_char']
self.id_to_tag = mappings['id_to_tag']
def add_component(self, param):
"""
Add a new parameter to the network.
"""
if param.name in self.components:
raise Exception('The network already has a parameter "%s"!'
% param.name)
self.components[param.name] = param
def save(self):
"""
Write components values to disk.
"""
print "Saving parameter values to disk"
for name, param in self.components.items():
param_path = os.path.join(self.model_path, "%s.mat" % name)
if hasattr(param, 'params'):
param_values = {p.name: p.get_value() for p in param.params}
else:
param_values = {name: param.get_value()}
#No need to save embeding values as they are never updated
#directly use the pretrained embeddings file
if name=='word_layer':
continue
else:
scipy.io.savemat(param_path, param_values)
def reload(self):
"""
Load components values from disk.
"""
for name, param in self.components.items():
param_path = os.path.join(self.model_path, "%s.mat" % name)
#load word layer during build from pretrained embeddings file.
if name=='word_layer':
continue
else:
param_values = scipy.io.loadmat(param_path)
if hasattr(param, 'params'):
for p in param.params:
set_values(p.name, p, param_values[p.name])
else:
set_values(name, param, param_values[name])
def build(self,
dropout,
char_dim,
char_lstm_dim,
char_bidirect,
word_dim,
word_lstm_dim,
word_bidirect,
lr_method,
pre_emb,
crf,
cap_dim,
training=True,
**kwargs
):
"""
Build the network.
"""
# Training parameters
n_words = len(self.id_to_word)
n_chars = len(self.id_to_char)
n_tags = len(self.id_to_tag)
# Number of capitalization features
if cap_dim:
n_cap = 4
# Network variables
is_train = T.iscalar('is_train')
word_ids = T.ivector(name='word_ids')
char_for_ids = T.imatrix(name='char_for_ids')
char_rev_ids = T.imatrix(name='char_rev_ids')
char_pos_ids = T.ivector(name='char_pos_ids')
tag_ids = T.ivector(name='tag_ids')
if cap_dim:
cap_ids = T.ivector(name='cap_ids')
# Sentence length
s_len = (word_ids if word_dim else char_pos_ids).shape[0]
# Final input (all word features)
input_dim = 0
inputs = []
#
# Word inputs
#
if word_dim:
input_dim += word_dim
word_layer = EmbeddingLayer(n_words, word_dim, name='word_layer')
word_input = word_layer.link(word_ids)
inputs.append(word_input)
# Initialize with pretrained embeddings
if pre_emb and training:
new_weights = word_layer.embeddings.get_value()
print 'Loading pretrained embeddings from %s...' % pre_emb
pretrained = {}
emb_invalid = 0
#use gensim models as pretrained embeddings
pretrained = gensim.models.word2vec.Word2Vec.load_word2vec_format(pre_emb, binary=True)
# for i, line in enumerate(codecs.open(pre_emb, 'r', 'cp850')):
# line = line.rstrip().split()
# if len(line) == word_dim + 1:
# pretrained[line[0]] = np.array(
# [float(x) for x in line[1:]]
# ).astype(np.float32)
# else:
# emb_invalid += 1
# if emb_invalid > 0:
# print 'WARNING: %i invalid lines' % emb_invalid
c_found = 0
c_lower = 0
c_zeros = 0
# Lookup table initialization
for i in xrange(n_words):
word = self.id_to_word[i]
if word in pretrained:
new_weights[i] = pretrained[word]
c_found += 1
elif word.lower() in pretrained:
new_weights[i] = pretrained[word.lower()]
c_lower += 1
elif re.sub('\d', '0', word.lower()) in pretrained:
new_weights[i] = pretrained[
re.sub('\d', '0', word.lower())
]
c_zeros += 1
word_layer.embeddings.set_value(new_weights)
# print 'Loaded %i pretrained embeddings.' % len(pretrained)
print ('%i / %i (%.4f%%) words have been initialized with '
'pretrained embeddings.') % (
c_found + c_lower + c_zeros, n_words,
100. * (c_found + c_lower + c_zeros) / n_words
)
print ('%i found directly, %i after lowercasing, '
'%i after lowercasing + zero.') % (
c_found, c_lower, c_zeros
)
#
# Chars inputs
#
if char_dim:
input_dim += char_lstm_dim
char_layer = EmbeddingLayer(n_chars, char_dim, name='char_layer')
char_lstm_for = LSTM(char_dim, char_lstm_dim, with_batch=True,
name='char_lstm_for')
char_lstm_rev = LSTM(char_dim, char_lstm_dim, with_batch=True,
name='char_lstm_rev')
char_lstm_for.link(char_layer.link(char_for_ids))
char_lstm_rev.link(char_layer.link(char_rev_ids))
char_for_output = char_lstm_for.h.dimshuffle((1, 0, 2))[
T.arange(s_len), char_pos_ids
]
char_rev_output = char_lstm_rev.h.dimshuffle((1, 0, 2))[
T.arange(s_len), char_pos_ids
]
inputs.append(char_for_output)
if char_bidirect:
inputs.append(char_rev_output)
input_dim += char_lstm_dim
#
# Capitalization feature
#
if cap_dim:
input_dim += cap_dim
cap_layer = EmbeddingLayer(n_cap, cap_dim, name='cap_layer')
inputs.append(cap_layer.link(cap_ids))
# Prepare final input
if len(inputs) != 1:
inputs = T.concatenate(inputs, axis=1)
#
# Dropout on final input
#
if dropout:
dropout_layer = DropoutLayer(p=dropout)
input_train = dropout_layer.link(inputs)
input_test = (1 - dropout) * inputs
inputs = T.switch(T.neq(is_train, 0), input_train, input_test)
# LSTM for words
word_lstm_for = LSTM(input_dim, word_lstm_dim, with_batch=False,
name='word_lstm_for')
word_lstm_rev = LSTM(input_dim, word_lstm_dim, with_batch=False,
name='word_lstm_rev')
word_lstm_for.link(inputs)
word_lstm_rev.link(inputs[::-1, :])
word_for_output = word_lstm_for.h
word_rev_output = word_lstm_rev.h[::-1, :]
if word_bidirect:
final_output = T.concatenate(
[word_for_output, word_rev_output],
axis=1
)
tanh_layer = HiddenLayer(2 * word_lstm_dim, word_lstm_dim,
name='tanh_layer', activation='tanh')
final_output = tanh_layer.link(final_output)
else:
final_output = word_for_output
# Sentence to Named Entity tags - Score
final_layer = HiddenLayer(word_lstm_dim, n_tags, name='final_layer',
activation=(None if crf else 'softmax'))
tags_scores = final_layer.link(final_output)
# No CRF
if not crf:
cost = T.nnet.categorical_crossentropy(tags_scores, tag_ids).mean()
# CRF
else:
transitions = shared((n_tags + 2, n_tags + 2), 'transitions')
small = -1000
b_s = np.array([[small] * n_tags + [0, small]]).astype(np.float32)
e_s = np.array([[small] * n_tags + [small, 0]]).astype(np.float32)
observations = T.concatenate(
[tags_scores, small * T.ones((s_len, 2))],
axis=1
)
observations = T.concatenate(
[b_s, observations, e_s],
axis=0
)
# Score from tags
real_path_score = tags_scores[T.arange(s_len), tag_ids].sum()
# Score from transitions
b_id = theano.shared(value=np.array([n_tags], dtype=np.int32))
e_id = theano.shared(value=np.array([n_tags + 1], dtype=np.int32))
padded_tags_ids = T.concatenate([b_id, tag_ids, e_id], axis=0)
real_path_score += transitions[
padded_tags_ids[T.arange(s_len + 1)],
padded_tags_ids[T.arange(s_len + 1) + 1]
].sum()
all_paths_scores = forward(observations, transitions)
cost = - (real_path_score - all_paths_scores)
# Network parameters
params = []
if word_dim:
self.add_component(word_layer)
params.extend(word_layer.params)
if char_dim:
self.add_component(char_layer)
self.add_component(char_lstm_for)
params.extend(char_layer.params)
params.extend(char_lstm_for.params)
if char_bidirect:
self.add_component(char_lstm_rev)
params.extend(char_lstm_rev.params)
self.add_component(word_lstm_for)
params.extend(word_lstm_for.params)
if word_bidirect:
self.add_component(word_lstm_rev)
params.extend(word_lstm_rev.params)
if cap_dim:
self.add_component(cap_layer)
params.extend(cap_layer.params)
self.add_component(final_layer)
params.extend(final_layer.params)
if crf:
self.add_component(transitions)
params.append(transitions)
if word_bidirect:
self.add_component(tanh_layer)
params.extend(tanh_layer.params)
# Prepare train and eval inputs
eval_inputs = []
if word_dim:
eval_inputs.append(word_ids)
if char_dim:
eval_inputs.append(char_for_ids)
if char_bidirect:
eval_inputs.append(char_rev_ids)
eval_inputs.append(char_pos_ids)
if cap_dim:
eval_inputs.append(cap_ids)
train_inputs = eval_inputs + [tag_ids]
# Parse optimization method parameters
if "-" in lr_method:
lr_method_name = lr_method[:lr_method.find('-')]
lr_method_parameters = {}
for x in lr_method[lr_method.find('-') + 1:].split('-'):
split = x.split('_')
assert len(split) == 2
lr_method_parameters[split[0]] = float(split[1])
else:
lr_method_name = lr_method
lr_method_parameters = {}
# Compile training function
print 'Compiling...'
if training:
updates = Optimization(clip=5.0).get_updates(lr_method_name, cost, params, **lr_method_parameters)
f_train = theano.function(
inputs=train_inputs,
outputs=cost,
updates=updates,
givens=({is_train: np.cast['int32'](1)} if dropout else {})
)
else:
f_train = None
# Compile evaluation function
if not crf:
f_eval = theano.function(
inputs=eval_inputs,
outputs=tags_scores,
givens=({is_train: np.cast['int32'](0)} if dropout else {})
)
else:
f_eval = theano.function(
inputs=eval_inputs,
outputs=forward(observations, transitions, viterbi=True,
return_alpha=False, return_best_sequence=True),
givens=({is_train: np.cast['int32'](0)} if dropout else {})
)
return f_train, f_eval