forked from opensourceware/Neural-ParsCit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tagger.py
executable file
·90 lines (81 loc) · 2.61 KB
/
tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
import os
import time
import codecs
import optparse
import numpy as np
from loader import prepare_sentence
from utils import create_input, iobes_iob, zero_digits
from model import Model
optparser = optparse.OptionParser()
optparser.add_option(
"-m", "--model", default="",
help="Model location"
)
optparser.add_option(
"-i", "--input", default="",
help="Input file location"
)
optparser.add_option(
"-o", "--output", default="",
help="Output file location"
)
optparser.add_option(
"-d", "--delimiter", default="__",
help="Delimiter to separate words from their tags"
)
opts = optparser.parse_args()[0]
# Check parameters validity
assert opts.delimiter
assert os.path.isdir(opts.model)
assert os.path.isfile(opts.input)
# Load existing model
print "Loading model..."
model = Model(model_path=opts.model)
parameters = model.parameters
# Load reverse mappings
word_to_id, char_to_id, tag_to_id = [
{v: k for k, v in x.items()}
for x in [model.id_to_word, model.id_to_char, model.id_to_tag]
]
# Load the model
_, f_eval = model.build(training=False, **parameters)
model.reload()
f_output = codecs.open(opts.output, 'w', 'utf-8')
start = time.time()
print 'Tagging...'
with codecs.open(opts.input, 'r', 'utf-8') as f_input:
count = 0
for line in f_input:
words = line.rstrip().split()
if line:
# Lowercase sentence
if parameters['lower']:
line = line.lower()
# Replace all digits with zeros
if parameters['zeros']:
line = zero_digits(line)
# Prepare input
sentence = prepare_sentence(words, word_to_id, char_to_id,
lower=parameters['lower'])
input = create_input(sentence, parameters, False)
# Decoding
if parameters['crf']:
y_preds = np.array(f_eval(*input))[1:-1]
else:
y_preds = f_eval(*input).argmax(axis=1)
y_preds = [model.id_to_tag[y_pred] for y_pred in y_preds]
# Output tags in the IOB2 format
if parameters['tag_scheme'] == 'iobes':
y_preds = iobes_iob(y_preds)
# Write tags
assert len(y_preds) == len(words)
f_output.write('%s\n' % ' '.join('%s%s%s' % (w, opts.delimiter, y)
for w, y in zip(words, y_preds)))
else:
f_output.write('\n')
count += 1
if count % 100 == 0:
print count
print '---- %i lines tagged in %.4fs ----' % (count, time.time() - start)
f_output.close()