diff --git a/previews/PR176/.documenter-siteinfo.json b/previews/PR176/.documenter-siteinfo.json index 2d088426b..c3a91d8d2 100644 --- a/previews/PR176/.documenter-siteinfo.json +++ b/previews/PR176/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-10-04T23:58:18","documenter_version":"1.1.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-10-07T14:42:16","documenter_version":"1.1.0"}} \ No newline at end of file diff --git a/previews/PR176/anisotropy.html b/previews/PR176/anisotropy.html index 7e39dc2ec..0f9d57a52 100644 --- a/previews/PR176/anisotropy.html +++ b/previews/PR176/anisotropy.html @@ -37,4 +37,4 @@ \hat{\mathcal{O}}_{6,\pm2} & =\phi_{\pm}(\hat{S}_{+}^{2}\pm \hat{S}_{-}^{2})(33\hat{S}_{z}^{4}-(18X+123)\hat{S}_{z}^{2}+X^{2}+10X+102)+\mathrm{h.c.}\\ \hat{\mathcal{O}}_{6,\pm1} & =\phi_{\pm}(\hat{S}_{+}\pm \hat{S}_{-})(33\hat{S}_{z}^{5}-(30X-15)\hat{S}_{z}^{3}+(5X^{2}-10X+12)\hat{S}_{z})+\mathrm{h.c.}\\ \hat{\mathcal{O}}_{6,0} & =231\hat{S}_{z}^{6}-(315X-735)\hat{S}_{z}^{4}+(105X^{2}-525X+294)\hat{S}_{z}^{2}-5X^{3}+40X^{2}-60X -\end{align*}\]
Stevens operators $\hat{\mathcal{O}}_{k,q}$ for odd $k$ are disallowed from the single-ion anisotropy under the assumption of time-reversal symmetry. Computer-generated tables of Stevens operators with larger k are available from C. Rudowicz and C. Y. Chung, J. Phys.: Condens. Matter 16, 5825 (2004).
For each $k$ value, the collection of operators $\{\hat{\mathcal{O}}_{k,q'}\}$ for $q' = -k, \dots, k$ is an irreducible representation of the group of rotations O(3). In particular, a physical rotation will transform $\hat{\mathcal{O}}_{k,q}$ into a linear combination of $\hat{\mathcal{O}}_{k,q'}$ where $q'$ varies but $k$ remains fixed.
In taking the large-$S$ limit, each dipole operator is replaced by its expectation value $\mathbf{s} = \langle \hat{\mathbf{S}} \rangle$, and only leading-order terms are retained. The operator $\hat{\mathcal{O}}_{k,q}$ becomes a homogeneous polynomial $O_{k,q}(\mathbf{s})$ of order $k$ in the spin components. One can see these polynomials using large_S_stevens_operators
. Due to the normalization constraint, each dipole can be expressed in polar angles, $(\theta, \phi)$. Then the Stevens functions $O_{k,q}(\mathbf{s})$ correspond to the spherical harmonic functions $Y_l^m(\theta, \phi)$ where $l=k$ and $m=q$, and modulo $k$ and $q$-dependent rescaling factors.
Settings
This document was generated with Documenter.jl version 1.1.0 on Wednesday 4 October 2023. Using Julia version 1.9.3.