-
Notifications
You must be signed in to change notification settings - Fork 0
/
TFLite_detection_image.py
238 lines (190 loc) · 9.82 KB
/
TFLite_detection_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
######## Webcam Object Detection Using Tensorflow-trained Classifier #########
#
# Author: Evan Juras
# Date: 11/11/22
# Description:
# This program uses a TensorFlow Lite object detection model to perform object
# detection on an image or a folder full of images. It draws boxes and scores
# around the objects of interest in each image.
#
# This code is based off the TensorFlow Lite image classification example at:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
#
# I added my own method of drawing boxes and labels using OpenCV.
# Import packages
import os
import argparse
import cv2
import numpy as np
import sys
import glob
import importlib.util
# Define and parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
required=True)
parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
default='detect.tflite')
parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
default='labelmap.txt')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
default=0.5)
parser.add_argument('--image', help='Name of the single image to perform detection on. To run detection on multiple images, use --imagedir',
default=None)
parser.add_argument('--imagedir', help='Name of the folder containing images to perform detection on. Folder must contain only images.',
default=None)
parser.add_argument('--save_results', help='Save labeled images and annotation data to a results folder',
action='store_true')
parser.add_argument('--noshow_results', help='Don\'t show result images (only use this if --save_results is enabled)',
action='store_false')
parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
action='store_true')
args = parser.parse_args()
# Parse user inputs
MODEL_NAME = args.modeldir
GRAPH_NAME = args.graph
LABELMAP_NAME = args.labels
min_conf_threshold = float(args.threshold)
use_TPU = args.edgetpu
save_results = args.save_results # Defaults to False
show_results = args.noshow_results # Defaults to True
IM_NAME = args.image
IM_DIR = args.imagedir
# If both an image AND a folder are specified, throw an error
if (IM_NAME and IM_DIR):
print('Error! Please only use the --image argument or the --imagedir argument, not both. Issue "python TFLite_detection_image.py -h" for help.')
sys.exit()
# If neither an image or a folder are specified, default to using 'test1.jpg' for image name
if (not IM_NAME and not IM_DIR):
IM_NAME = 'test1.jpg'
# Import TensorFlow libraries
# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
# If using Coral Edge TPU, import the load_delegate library
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
from tflite_runtime.interpreter import Interpreter
if use_TPU:
from tflite_runtime.interpreter import load_delegate
else:
from tensorflow.lite.python.interpreter import Interpreter
if use_TPU:
from tensorflow.lite.python.interpreter import load_delegate
# If using Edge TPU, assign filename for Edge TPU model
if use_TPU:
# If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
if (GRAPH_NAME == 'detect.tflite'):
GRAPH_NAME = 'edgetpu.tflite'
# Get path to current working directory
CWD_PATH = os.getcwd()
# Define path to images and grab all image filenames
if IM_DIR:
PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_DIR)
images = glob.glob(PATH_TO_IMAGES + '/*.jpg') + glob.glob(PATH_TO_IMAGES + '/*.png') + glob.glob(PATH_TO_IMAGES + '/*.bmp')
if save_results:
RESULTS_DIR = IM_DIR + '_results'
elif IM_NAME:
PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_NAME)
images = glob.glob(PATH_TO_IMAGES)
if save_results:
RESULTS_DIR = 'results'
# Create results directory if user wants to save results
if save_results:
RESULTS_PATH = os.path.join(CWD_PATH,RESULTS_DIR)
if not os.path.exists(RESULTS_PATH):
os.makedirs(RESULTS_PATH)
# Path to .tflite file, which contains the model that is used for object detection
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
# Load the label map
with open(PATH_TO_LABELS, 'r') as f:
labels = [line.strip() for line in f.readlines()]
# Have to do a weird fix for label map if using the COCO "starter model" from
# https://www.tensorflow.org/lite/models/object_detection/overview
# First label is '???', which has to be removed.
if labels[0] == '???':
del(labels[0])
# Load the Tensorflow Lite model.
# If using Edge TPU, use special load_delegate argument
if use_TPU:
interpreter = Interpreter(model_path=PATH_TO_CKPT,
experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
print(PATH_TO_CKPT)
else:
interpreter = Interpreter(model_path=PATH_TO_CKPT)
interpreter.allocate_tensors()
# Get model details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
input_mean = 127.5
input_std = 127.5
# Check output layer name to determine if this model was created with TF2 or TF1,
# because outputs are ordered differently for TF2 and TF1 models
outname = output_details[0]['name']
if ('StatefulPartitionedCall' in outname): # This is a TF2 model
boxes_idx, classes_idx, scores_idx = 1, 3, 0
else: # This is a TF1 model
boxes_idx, classes_idx, scores_idx = 0, 1, 2
# Loop over every image and perform detection
for image_path in images:
# Load image and resize to expected shape [1xHxWx3]
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
imH, imW, _ = image.shape
image_resized = cv2.resize(image_rgb, (width, height))
input_data = np.expand_dims(image_resized, axis=0)
# Normalize pixel values if using a floating model (i.e. if model is non-quantized)
if floating_model:
input_data = (np.float32(input_data) - input_mean) / input_std
# Perform the actual detection by running the model with the image as input
interpreter.set_tensor(input_details[0]['index'],input_data)
interpreter.invoke()
# Retrieve detection results
boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0] # Bounding box coordinates of detected objects
classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0] # Class index of detected objects
scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0] # Confidence of detected objects
detections = []
# Loop over all detections and draw detection box if confidence is above minimum threshold
for i in range(len(scores)):
if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
# Get bounding box coordinates and draw box
# Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
ymin = int(max(1,(boxes[i][0] * imH)))
xmin = int(max(1,(boxes[i][1] * imW)))
ymax = int(min(imH,(boxes[i][2] * imH)))
xmax = int(min(imW,(boxes[i][3] * imW)))
cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
# Draw label
object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
detections.append([object_name, scores[i], xmin, ymin, xmax, ymax])
# All the results have been drawn on the image, now display the image
if show_results:
cv2.imshow('Object detector', image)
# Press any key to continue to next image, or press 'q' to quit
if cv2.waitKey(0) == ord('q'):
break
# Save the labeled image to results folder if desired
if save_results:
# Get filenames and paths
image_fn = os.path.basename(image_path)
image_savepath = os.path.join(CWD_PATH,RESULTS_DIR,image_fn)
base_fn, ext = os.path.splitext(image_fn)
txt_result_fn = base_fn +'.txt'
txt_savepath = os.path.join(CWD_PATH,RESULTS_DIR,txt_result_fn)
# Save image
cv2.imwrite(image_savepath, image)
# Write results to text file
# (Using format defined by https://github.com/Cartucho/mAP, which will make it easy to calculate mAP)
with open(txt_savepath,'w') as f:
for detection in detections:
f.write('%s %.4f %d %d %d %d\n' % (detection[0], detection[1], detection[2], detection[3], detection[4], detection[5]))
# Clean up
cv2.destroyAllWindows()