-
Notifications
You must be signed in to change notification settings - Fork 33
/
anime_videos_preprocessing.py
651 lines (521 loc) · 23 KB
/
anime_videos_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import argparse
import cv2
import glob
import numpy as np
import os
import shutil
import torch
import torchvision
from multiprocessing import Pool
from os import path as osp
from PIL import Image
from tqdm import tqdm
from animesr.utils import video_util
from animesr.utils.shot_detector import ShotDetector
from basicsr.archs.spynet_arch import SpyNet
from basicsr.utils import img2tensor
from basicsr.utils.download_util import download_file_from_google_drive
from facexlib.assessment import init_assessment_model
def main(args):
"""A script to prepare anime videos.
The preparation can be divided into following steps:
1. use ffmpeg to extract frames
2. shot detection
3. estimate flow
4. detect black frames
5. use hyperIQA to evaluate the quality of frames
6. generate at most 5 clips per video
"""
opt = dict()
opt['debug'] = args.debug
opt['n_thread'] = args.n_thread
opt['ss_idx'] = args.ss_idx
opt['to_idx'] = args.to_idx
# params for step1: extract frames
opt['video_root'] = f'{args.dataroot}/raw_videos'
opt['save_frames_root'] = f'{args.dataroot}/frames'
opt['meta_files_root'] = f'{args.dataroot}/meta'
# params for step2: shot detection
opt['detect_shot_root'] = f'{args.dataroot}/detect_shot'
# params for step3: flow estimation
opt['estimate_flow_root'] = f'{args.dataroot}/estimate_flow'
opt['spy_pretrain_weight'] = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth'
opt['downscale_factor'] = 1
# params for step4: detect black frames
opt['black_flag_root'] = f'{args.dataroot}/black_flag'
opt['black_threshold'] = 0.98
# params for step5: image quality assessment
opt['num_patch_per_iqa'] = 5
opt['iqa_score_root'] = f'{args.dataroot}/iqa_score'
# params for step6: generate clips
opt['num_frames_per_clip'] = args.n_frames_per_clip
opt['num_clips_per_video'] = args.n_clips_per_video
opt['select_clips_root'] = f'{args.dataroot}/{args.select_clip_root}'
opt['select_clips_meta'] = osp.join(opt['select_clips_root'], 'meta_info')
opt['select_clips_frames'] = osp.join(opt['select_clips_root'], 'frames')
opt['select_done_flags'] = osp.join(opt['select_clips_root'], 'done_flags')
if '1' in args.run:
run_step1(opt)
if '2' in args.run:
run_step2(opt)
if '3' in args.run:
run_step3(opt)
if '4' in args.run:
run_step4(opt)
if '5' in args.run:
run_step5(opt)
if '6' in args.run:
run_step6(opt)
# -------------------------------------------------------------------- #
# --------------------------- step1 ---------------------------------- #
# -------------------------------------------------------------------- #
def run_step1(opt):
"""extract frames
1. read all video files under video_root folder
2. filter out the videos that already have been processed
3. use multi-process to extract the remaining videos
"""
video_root = opt['video_root']
frames_root = opt['save_frames_root']
meta_root = opt['meta_files_root']
os.makedirs(frames_root, exist_ok=True)
os.makedirs(meta_root, exist_ok=True)
if not osp.isdir(video_root):
print(f'path {video_root} is not a valid folder, exit.')
videos_path = sorted(glob.glob(osp.join(video_root, '*')))
if opt['debug']:
videos_path = videos_path[:3]
else:
videos_path = videos_path[opt['ss_idx']:opt['to_idx']]
pbar = tqdm(total=len(videos_path), unit='video', desc='step1')
pool = Pool(opt['n_thread'])
for video_path in videos_path:
video_name = osp.splitext(osp.basename(video_path))[0]
if video_name.startswith('.'):
print(f'skip {video_name}')
continue
frame_path = osp.join(frames_root, video_name)
meta_path = osp.join(meta_root, f'{video_name}.txt')
pool.apply_async(
worker1, args=(opt, video_name, video_path, frame_path, meta_path), callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
def worker1(opt, video_name, video_path, frame_path, meta_path):
# get info of video
fps = video_util.get_video_fps(video_path)
h, w = video_util.get_video_resolution(video_path)
num_frames = video_util.get_video_num_frames(video_path)
bit_rate = video_util.get_video_bitrate(video_path)
# check whether this video has been processed
flag = True
num_extracted_frames = 0
if osp.exists(frame_path):
num_extracted_frames = len(glob.glob(osp.join(frame_path, '*.png')))
if num_extracted_frames == num_frames:
print(f'skip {video_path} since there are already {num_frames} frames have been extracted.')
flag = False
else:
print(f'{num_extracted_frames} of {num_frames} have been extracted for {video_path}, re-run.')
# extract frames
os.makedirs(frame_path, exist_ok=True)
video_util.video2frames(video_path, frame_path, force=flag, high_quality=True)
if flag:
num_extracted_frames = len(glob.glob(osp.join(frame_path, '*.png')))
# write some metadata to meta file
with open(meta_path, 'w') as f:
f.write(f'Video Name: {video_name}\n')
f.write(f'H: {h}\n')
f.write(f'W: {w}\n')
f.write(f'FPS: {fps}\n')
f.write(f'Bit Rate: {bit_rate}kbps\n')
f.write(f'{num_extracted_frames}/{num_frames} have been extracted\n')
# -------------------------------------------------------------------- #
# --------------------------- step2 ---------------------------------- #
# -------------------------------------------------------------------- #
def run_step2(opt):
"""shot detection. refer to lijian's pipeline"""
detect_shot_root = opt['detect_shot_root']
meta_root = opt['meta_files_root']
os.makedirs(detect_shot_root, exist_ok=True)
if not osp.exists(meta_root):
print('no videos has run step1, exit.')
return
# get the video which has been extracted frames
videos_name = sorted(glob.glob(osp.join(meta_root, '*.txt')))
videos_name = [osp.splitext(osp.basename(video_name))[0] for video_name in videos_name]
if opt['debug']:
videos_name = videos_name[:3]
else:
videos_name = videos_name[opt['ss_idx']:opt['to_idx']]
pbar = tqdm(total=len(videos_name), unit='video', desc='step2')
pool = Pool(opt['n_thread'])
for video_name in videos_name:
pool.apply_async(worker2, args=(opt, video_name), callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
def worker2(opt, video_name):
video_frame_path = osp.join(opt['save_frames_root'], video_name)
detect_shot_file_path = osp.join(opt['detect_shot_root'], f'{video_name}.txt')
if osp.exists(detect_shot_file_path):
print(f'skip {video_name} since {detect_shot_file_path} already exist.')
return
detector = ShotDetector()
shot_list = detector.detect_shots(video_frame_path)
with open(detect_shot_file_path, 'w') as f:
for shot in shot_list:
f.write(f'{shot[0]} {shot[1]}\n')
# -------------------------------------------------------------------- #
# --------------------------- step3 ---------------------------------- #
# -------------------------------------------------------------------- #
def run_step3(opt):
estimate_flow_root = opt['estimate_flow_root']
meta_root = opt['meta_files_root']
os.makedirs(estimate_flow_root, exist_ok=True)
if not osp.exists(meta_root):
print('no videos has run step1, exit.')
return
# download the spynet checkpoint first
if not osp.exists(opt['spy_pretrain_weight']):
download_file_from_google_drive('1VZz1cikwTRVX7zXoD247DB7n5Tj_LQpF', opt['spy_pretrain_weight'])
# get the video which has been extracted frames
videos_name = sorted(glob.glob(osp.join(meta_root, '*.txt')))
videos_name = [osp.splitext(osp.basename(video_name))[0] for video_name in videos_name]
if opt['debug']:
videos_name = videos_name[:3]
else:
videos_name = videos_name[opt['ss_idx']:opt['to_idx']]
pbar = tqdm(total=len(videos_name), unit='video', desc='step3')
num_gpus = torch.cuda.device_count()
ctx = torch.multiprocessing.get_context('spawn')
pool = ctx.Pool(min(3 * num_gpus, opt['n_thread']))
for idx, video_name in enumerate(videos_name):
pool.apply_async(
worker3, args=(opt, video_name, torch.device(idx % num_gpus)), callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
def read_img(img_path, device, downscale_factor=1):
img = cv2.imread(img_path)
h, w = img.shape[0:2]
if downscale_factor != 1:
img = cv2.resize(img, (w // downscale_factor, h // downscale_factor), interpolation=cv2.INTER_LANCZOS4)
img = img2tensor(img)
img = img.unsqueeze(0).to(device)
return img
@torch.no_grad()
def worker3(opt, video_name, device):
video_frame_path = osp.join(opt['save_frames_root'], video_name)
frames_path = sorted(glob.glob(osp.join(video_frame_path, '*.png')))
estimate_flow_file_path = osp.join(opt['estimate_flow_root'], f'{video_name}.txt')
if osp.exists(estimate_flow_file_path):
with open(estimate_flow_file_path, 'r') as f:
lines = f.readlines()
length = len(lines)
if length == len(frames_path):
print(f'skip {video_name} since {length}/{len(frames_path)} have done.')
return
else:
print(f're-run {video_name} since only {length}/{len(frames_path)} have done.')
spynet = SpyNet(load_path=opt['spy_pretrain_weight']).eval().to(device)
downscale_factor = opt['downscale_factor']
flow_out_list = []
pbar = tqdm(total=len(frames_path), unit='frame', desc='worker3')
pre_img = None
for idx, frame_path in enumerate(frames_path):
img_name = osp.basename(frame_path)
cur_img = read_img(frame_path, device, downscale_factor=downscale_factor)
if pre_img is not None:
flow = spynet(cur_img, pre_img)
flow = flow.abs()
flow_max = flow.max().item()
flow_avg = flow.mean().item() * 2.0 # according to lijian's hyper-parameter
elif idx == 0:
flow_max = 0.0
flow_avg = 0.0
else:
raise RuntimeError(f'pre_img is none at {idx}')
flow_out_list.append(f'{img_name} {flow_max:.6f} {flow_avg:.6f}\n')
pre_img = cur_img
pbar.update(1)
with open(estimate_flow_file_path, 'w') as f:
for line in flow_out_list:
f.write(line)
# -------------------------------------------------------------------- #
# --------------------------- step4 ---------------------------------- #
# -------------------------------------------------------------------- #
def run_step4(opt):
black_flag_root = opt['black_flag_root']
meta_root = opt['meta_files_root']
os.makedirs(black_flag_root, exist_ok=True)
if not osp.exists(meta_root):
print('no videos has run step1, exit.')
return
# get the video which has been extracted frames
videos_name = sorted(glob.glob(osp.join(meta_root, '*.txt')))
videos_name = [osp.splitext(osp.basename(video_name))[0] for video_name in videos_name]
if opt['debug']:
videos_name = videos_name[:3]
os.makedirs('tmp_black', exist_ok=True)
else:
videos_name = videos_name[opt['ss_idx']:opt['to_idx']]
pbar = tqdm(total=len(videos_name), unit='video', desc='step4')
pool = Pool(opt['n_thread'])
for idx, video_name in enumerate(videos_name):
pool.apply_async(worker4, args=(opt, video_name), callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
def worker4(opt, video_name):
video_frame_path = osp.join(opt['save_frames_root'], video_name)
black_flag_path = osp.join(opt['black_flag_root'], f'{video_name}.txt')
if osp.exists(black_flag_path):
print(f'skip {video_name} since {black_flag_path} already exists.')
return
frames_path = sorted(glob.glob(osp.join(video_frame_path, '*.png')))
out_list = []
pbar = tqdm(total=len(frames_path), unit='frame', desc='worker4')
for frame_path in frames_path:
img = cv2.imread(frame_path)
img_name = osp.basename(frame_path)
h, w = img.shape[0:2]
total_pixels = h * w
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hist = cv2.calcHist([img_gray], [0], None, [256], [0.0, 255.0])
max_pixel = max(hist)[0]
percentage = max_pixel / total_pixels
if percentage > opt['black_threshold']:
out_list.append(f'{img_name} {0} {percentage:.6f}\n')
if opt['debug']:
cv2.imwrite(osp.join('tmp_black', f'{video_name}_{img_name}'), img)
else:
out_list.append(f'{img_name} {1} {percentage:.6f}\n')
pbar.update(1)
with open(black_flag_path, 'w') as f:
for line in out_list:
f.write(line)
# -------------------------------------------------------------------- #
# --------------------------- step5 ---------------------------------- #
# -------------------------------------------------------------------- #
def run_step5(opt):
iqa_score_root = opt['iqa_score_root']
meta_root = opt['meta_files_root']
os.makedirs(iqa_score_root, exist_ok=True)
if not osp.exists(meta_root):
print('no videos has run step1, exit.')
return
# get the video which has been extracted frames
videos_name = sorted(glob.glob(osp.join(meta_root, '*.txt')))
videos_name = [osp.splitext(osp.basename(video_name))[0] for video_name in videos_name]
if opt['debug']:
videos_name = videos_name[:3]
os.makedirs('tmp_low_iqa', exist_ok=True)
else:
videos_name = videos_name[opt['ss_idx']:opt['to_idx']]
pbar = tqdm(total=len(videos_name), unit='video', desc='step5')
num_gpus = torch.cuda.device_count()
ctx = torch.multiprocessing.get_context('spawn')
pool = ctx.Pool(min(3 * num_gpus, opt['n_thread']))
for idx, video_name in enumerate(videos_name):
pool.apply_async(
worker5, args=(opt, video_name, torch.device(idx % num_gpus)), callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
@torch.no_grad()
def worker5(opt, video_name, device):
video_frame_path = osp.join(opt['save_frames_root'], video_name)
frames_path = sorted(glob.glob(osp.join(video_frame_path, '*.png')))
iqa_score_path = osp.join(opt['iqa_score_root'], f'{video_name}.txt')
if osp.exists(iqa_score_path):
with open(iqa_score_path, 'r') as f:
lines = f.readlines()
length = len(lines)
if length == len(frames_path):
print(f'skip {video_name} since {length}/{len(frames_path)} have done.')
return
else:
print(f're-run {video_name} since only {length}/{len(frames_path)} have done.')
assess_net = init_assessment_model('hypernet', device=device)
assess_net = assess_net.half()
# specified transformation in original hyperIQA
transforms_resize = torchvision.transforms.Compose([
torchvision.transforms.Resize((512, 384)),
])
transforms_crop = torchvision.transforms.Compose([
torchvision.transforms.RandomCrop(size=224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
iqa_out_list = []
pbar = tqdm(total=len(frames_path), unit='frame', desc='worker3')
for idx, frame_path in enumerate(frames_path):
img_name = osp.basename(frame_path)
cv2_img = cv2.imread(frame_path)
# BRG -> RGB
img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
patchs = []
img_resize = transforms_resize(img)
for _ in range(opt['num_patch_per_iqa']):
patchs.append(transforms_crop(img_resize))
patch = torch.stack(patchs, dim=0).to(device)
pred = assess_net(patch.half())
score = pred.mean().item()
iqa_out_list.append(f'{img_name} {score:.6f}\n')
if opt['debug'] and score < 50.0:
cv2.imwrite(osp.join('tmp_low_iqa', f'{video_name}_{img_name}'), cv2_img)
pbar.update(1)
with open(iqa_score_path, 'w') as f:
for line in iqa_out_list:
f.write(line)
# -------------------------------------------------------------------- #
# --------------------------- step6 ---------------------------------- #
# -------------------------------------------------------------------- #
def filter_frozen_shots(shots, flows):
"""select clips from input video."""
flag_shot = np.ones(len(shots))
for idx, shot in enumerate(shots):
shot = shot.split(' ')
start = int(shot[0])
end = int(shot[1])
flow_in_shot = []
for i in range(start, end + 1, 1):
if i == 0:
continue
else:
flow_in_shot.append(float(flows[i].split(' ')[2]))
flow_in_shot = np.array(flow_in_shot)
flow_std = np.std(flow_in_shot)
if flow_std < 14.0:
flag_shot[idx] = 0
return flag_shot
def generate_clips(shots, flows, filter_frames, hyperiqa, max_length=500):
"""
hyperiqa [0, 100]
flows [0, 15000] (may be larger)
"""
clips = []
clip_scores = []
clip = []
shot_flow = 0
shot_hyperiqa = 0
for shot in shots:
shot = shot.split(' ')
start = int(shot[0])
end = int(shot[1])
pre_black = 0
for i in range(start, end + 1, 1):
if i == start:
stat = 0
pre_black = 1 # the first frame in shot do not need flow
else:
stat = 1
black_frame_thr = float(filter_frames[i].split(' ')[2])
# drop img when 90% of pixels are identical
if black_frame_thr < 0.90:
black_frame = 0
else:
black_frame = 1
# if current frame is a black frame, delete
if black_frame == 1:
pre_black = 1
elif pre_black == 0:
flow = float(flows[i].split(' ')[1])
shot_flow += flow
else:
pre_black = 0
flow = float(flows[i].split(' ')[1])
# calcu hyperiqa for non-black frames
if black_frame == 0:
curr_hyperiqa = float(hyperiqa[i].split(' ')[1])
shot_hyperiqa += curr_hyperiqa
clip.append(f'{i+1:08d} {stat} {flow} {curr_hyperiqa}')
if len(clip) == max_length:
clips.append(clip.copy())
clip_score = shot_flow / 150.0 + shot_hyperiqa
clip_score = clip_score / len(clip)
clip_scores.append(clip_score)
clip = []
shot_flow = 0
shot_hyperiqa = 0
# print(len(clip))
# if len(clip) > 0:
# clips.append(clip.copy())
# clip_score = shot_flow / 150.0 + shot_hyperiqa
# clip_score = clip_score / len(clip)
# clip_scores.append(clip_score)
sorted_shot = np.argsort(-np.array(clip_scores))
return [clips[i] for i in sorted_shot], [clip_scores[i] for i in sorted_shot]
def run_step6(opt):
meta_root = opt['meta_files_root']
if not osp.exists(meta_root):
print('no videos has run step1, exit.')
return
# get the video which has been extracted frames
videos_name = sorted(glob.glob(osp.join(meta_root, '*.txt')))
videos_name = [osp.splitext(osp.basename(video_name))[0] for video_name in videos_name]
if opt['debug']:
videos_name = videos_name[:3]
else:
videos_name = videos_name[opt['ss_idx']:opt['to_idx']]
pbar = tqdm(total=len(videos_name), unit='video', desc='step6')
os.makedirs(opt['select_clips_meta'], exist_ok=True)
os.makedirs(opt['select_clips_frames'], exist_ok=True)
os.makedirs(opt['select_done_flags'], exist_ok=True)
pool = Pool(opt['n_thread'])
for video_name in videos_name:
pool.apply_async(worker6, args=(opt, video_name), callback=lambda arg: pbar.update(1))
pool.close()
pool.join()
def worker6(opt, video_name):
select_clips_meta = opt['select_clips_meta']
select_clips_frames = opt['select_clips_frames']
select_done_flags = opt['select_done_flags']
if osp.exists(osp.join(select_done_flags, f'{video_name}.txt')):
print(f'skip {video_name}.')
return
with open(osp.join(opt['detect_shot_root'], f'{video_name}.txt'), 'r') as f:
shots = f.readlines()
shots = [shot.strip() for shot in shots]
with open(osp.join(opt['estimate_flow_root'], f'{video_name}.txt'), 'r') as f:
flows = f.readlines()
flows = [flow.strip() for flow in flows]
with open(osp.join(opt['black_flag_root'], f'{video_name}.txt'), 'r') as f:
black_flags = f.readlines()
black_flags = [black_flag.strip() for black_flag in black_flags]
with open(osp.join(opt['iqa_score_root'], f'{video_name}.txt'), 'r') as f:
iqa_scores = f.readlines()
iqa_scores = [iqa_score.strip() for iqa_score in iqa_scores]
flag_shot = filter_frozen_shots(shots, flows)
flag = np.where(flag_shot == 1)
flag = flag[0].tolist()
filtered_shots = [shots[i] for i in flag]
clips, scores = generate_clips(
filtered_shots, flows, black_flags, iqa_scores, max_length=opt['num_frames_per_clip'])
with open(osp.join(select_clips_meta, f'{video_name}.txt'), 'w') as f:
for i, clip in enumerate(clips):
os.makedirs(osp.join(select_clips_frames, f'{video_name}_{i}'), exist_ok=True)
for idx, info in enumerate(clip):
f.write(f'clip: {i:02d} {info} {scores[i]}\n')
img_name = info.split(' ')[0] + '.png'
shutil.copy(
osp.join(opt['save_frames_root'], video_name, img_name),
osp.join(select_clips_frames, f'{video_name}_{i}', f'{idx:08d}.png'))
if i >= opt['num_clips_per_video'] - 1:
break
with open(osp.join(select_done_flags, f'{video_name}.txt'), 'w') as f:
f.write(f'{i+1} clips are selected for {video_name}.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataroot',
type=str,
required=True,
help='dataset root, dataroot/raw_videos should contains your HQ videos to be processed.')
parser.add_argument('--n_thread', type=int, default=4, help='Thread number.')
parser.add_argument('--run', type=str, default='123456', help='run which steps')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--ss_idx', type=int, default=None, help='ss index')
parser.add_argument('--to_idx', type=int, default=None, help='to index')
parser.add_argument('--n_frames_per_clip', type=int, default=100)
parser.add_argument('--n_clips_per_video', type=int, default=1)
parser.add_argument('--select_clip_root', type=str, default='select_clips')
args = parser.parse_args()
main(args)