forked from vova616/chipmunk
-
Notifications
You must be signed in to change notification settings - Fork 2
/
space.go
1008 lines (831 loc) · 24.5 KB
/
space.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package chipmunk
import (
"errors"
"fmt"
"github.com/TheZeroSlave/chipmunk/transform"
"github.com/TheZeroSlave/chipmunk/vect"
//"github.com/davecgh/go-spew/spew"
"math"
"time"
)
const ArbiterBufferSize = 1000
const ContactBufferSize = ArbiterBufferSize * MaxPoints
type Space struct {
/// Number of iterations to use in the impulse solver to solve contacts.
Iterations int
/// Gravity to pass to rigid bodies when integrating velocity.
Gravity vect.Vect
/// Linear damping rate expressed as the fraction of linear velocity bodies retain each second.
/// A value of 0.9 would mean that each body's velocity will drop 10% per second.
/// The default value is 1.0, meaning no damping is applied.
/// @note This damping value is different than those of cpDampedSpring and cpDampedRotarySpring.
LinearDamping float32
/// Angular damping is the same as linear damping, but for angular velocity
AngularDamping float32
/// Speed threshold for a body to be considered idle.
/// The default value of 0 means to let the space guess a good threshold based on gravity.
idleSpeedThreshold float32
/// Time a group of bodies must remain idle in order to fall asleep.
/// Enabling sleeping also implicitly enables the the contact graph.
/// The default value of INFINITY disables the sleeping algorithm.
sleepTimeThreshold float32
/// Amount of encouraged penetration between colliding shapes.
/// Used to reduce oscillating contacts and keep the collision cache warm.
/// Defaults to 0.1. If you have poor simulation quality,
/// increase this number as much as possible without allowing visible amounts of overlap.
collisionSlop float32
/// Determines how fast overlapping shapes are pushed apart.
/// Expressed as a fraction of the error remaining after each second.
/// Defaults to pow(1.0 - 0.1, 60.0) meaning that Chipmunk fixes 10% of overlap each frame at 60Hz.
collisionBias float32
/// Number of frames that contact information should persist.
/// Defaults to 3. There is probably never a reason to change this value.
collisionPersistence int64
/// Rebuild the contact graph during each step. Must be enabled to use the cpBodyEachArbiter() function.
/// Disabled by default for a small performance boost. Enabled implicitly when the sleeping feature is enabled.
enableContactGraph bool
curr_dt float32
Constraints []Constraint
Bodies []*Body
sleepingComponents []*Body
deleteBodies []*Body
stamp time.Duration
staticShapes *SpatialIndex
activeShapes *SpatialIndex
cachedArbiters map[HashPair]*Arbiter
Arbiters []*Arbiter
ArbiterBuffer []*Arbiter
ContactBuffer [][]*Contact
ApplyImpulsesTime time.Duration
ReindexQueryTime time.Duration
StepTime time.Duration
}
type ContactBufferHeader struct {
stamp time.Duration
next *ContactBufferHeader
numContacts int
}
type ContactBuffer struct {
header ContactBufferHeader
contacts [256]Contact
}
func NewSpace() (space *Space) {
space = &Space{}
space.Iterations = 20
space.Gravity = vect.Vector_Zero
space.LinearDamping = 1.0
space.AngularDamping = 1.0
space.collisionSlop = 0.5
space.collisionBias = float32(math.Pow(1.0-0.1, 60))
space.collisionPersistence = 3
space.Constraints = make([]Constraint, 0)
space.Bodies = make([]*Body, 0)
space.deleteBodies = make([]*Body, 0)
space.sleepingComponents = make([]*Body, 0)
space.staticShapes = NewBBTree(nil)
space.activeShapes = NewBBTree(space.staticShapes)
space.cachedArbiters = make(map[HashPair]*Arbiter)
space.Arbiters = make([]*Arbiter, 0)
space.ArbiterBuffer = make([]*Arbiter, ArbiterBufferSize)
for i := 0; i < len(space.ArbiterBuffer); i++ {
space.ArbiterBuffer[i] = newArbiter()
}
space.ContactBuffer = make([][]*Contact, ContactBufferSize)
for i := 0; i < len(space.ContactBuffer); i++ {
var contacts []*Contact = make([]*Contact, MaxPoints)
for i := 0; i < MaxPoints; i++ {
contacts[i] = &Contact{}
}
space.ContactBuffer[i] = contacts
}
/*
for i := 0; i < 8; i++ {
go space.MultiThreadTest()
}
*/
return
}
func (space *Space) Destory() {
fmt.Println("Destory is depricated, used Destroy instead.")
space.Destroy()
}
func (space *Space) Destroy() {
space.Bodies = nil
space.sleepingComponents = nil
space.staticShapes = nil
space.activeShapes = nil
space.cachedArbiters = nil
space.Arbiters = nil
space.ArbiterBuffer = nil
space.ContactBuffer = nil
}
func (space *Space) Step(dt float32) {
// don't step if the timestep is 0!
if dt == 0 {
return
}
stepStart := time.Now()
bodies := space.Bodies
for _, arb := range space.Arbiters {
arb.state = arbiterStateNormal
}
space.Arbiters = space.Arbiters[0:0]
prev_dt := space.curr_dt
space.curr_dt = dt
space.stamp++
for _, body := range bodies {
if body.Enabled {
body.UpdatePosition(dt)
}
}
for _, body := range bodies {
if body.Enabled {
body.UpdateShapes()
}
}
start := time.Now()
space.activeShapes.ReindexQuery(func(a, b Indexable) {
SpaceCollideShapes(a.Shape(), b.Shape(), space)
})
space.ReindexQueryTime = time.Since(start)
//axc := space.activeShapes.SpatialIndexClass.(*BBTree)
//PrintTree(axc.root)
for h, arb := range space.cachedArbiters {
ticks := space.stamp - arb.stamp
deleted := (arb.BodyA.deleted || arb.BodyB.deleted)
disabled := !(arb.BodyA.Enabled || arb.BodyB.Enabled)
if (ticks >= 1 && arb.state != arbiterStateCached) || deleted || disabled {
arb.state = arbiterStateCached
if arb.BodyA.CallbackHandler != nil {
arb.BodyA.CallbackHandler.CollisionExit(arb)
}
if arb.BodyB.CallbackHandler != nil {
arb.BodyB.CallbackHandler.CollisionExit(arb)
}
}
if ticks > time.Duration(space.collisionPersistence) || deleted {
delete(space.cachedArbiters, h)
space.ArbiterBuffer = append(space.ArbiterBuffer, arb)
c := arb.Contacts
if c != nil {
space.ContactBuffer = append(space.ContactBuffer, c)
}
}
}
slop := space.collisionSlop
biasCoef := float32(1.0 - math.Pow(float64(space.collisionBias), float64(dt)))
invdt := float32(1 / dt)
for _, arb := range space.Arbiters {
arb.preStep(invdt, slop, biasCoef)
}
for _, con := range space.Constraints {
con.PreSolve()
con.PreStep(dt)
}
ldamping := float32(math.Pow(float64(space.LinearDamping), float64(dt)))
adamping := float32(math.Pow(float64(space.AngularDamping), float64(dt)))
for _, body := range bodies {
if body.Enabled {
if body.IgnoreGravity {
body.UpdateVelocity(vect.Vector_Zero, ldamping, adamping, dt)
continue
}
body.UpdateVelocity(space.Gravity, ldamping, adamping, dt)
}
}
dt_coef := float32(0)
if prev_dt != 0 {
dt_coef = dt / prev_dt
}
for _, arb := range space.Arbiters {
arb.applyCachedImpulse(dt_coef)
}
for _, con := range space.Constraints {
con.ApplyCachedImpulse(dt_coef)
}
//fmt.Println("STEP")
start = time.Now()
//fmt.Println("Arbiters", len(space.Arbiters), biasCoef, dt)
//spew.Config.MaxDepth = 3
//spew.Config.Indent = "\t"
for i := 0; i < space.Iterations; i++ {
for _, arb := range space.Arbiters {
arb.applyImpulse()
//spew.Dump(arb)
//spew.Printf("%+v\n", arb)
}
for _, con := range space.Constraints {
con.ApplyImpulse()
}
}
//fmt.Println("####")
//fmt.Println("")
//MultiThreadGo()
//for i:=0; i<8; i++ {
// <-done
//}
space.ApplyImpulsesTime = time.Since(start)
for _, con := range space.Constraints {
con.PostSolve()
}
for _, arb := range space.Arbiters {
if arb.ShapeA.Body.CallbackHandler != nil {
arb.ShapeA.Body.CallbackHandler.CollisionPostSolve(arb)
}
if arb.ShapeB.Body.CallbackHandler != nil {
arb.ShapeB.Body.CallbackHandler.CollisionPostSolve(arb)
}
}
if len(space.deleteBodies) > 0 {
for _, body := range space.deleteBodies {
space.removeBody(body)
}
space.deleteBodies = space.deleteBodies[0:0]
}
stepEnd := time.Now()
space.StepTime = stepEnd.Sub(stepStart)
}
var done = make(chan bool, 8)
var start = make(chan bool, 8)
func (space *Space) MultiThreadTest() {
for {
<-start
for i := 0; i < space.Iterations/8; i++ {
for _, arb := range space.Arbiters {
if arb.ShapeA.IsSensor || arb.ShapeB.IsSensor {
continue
}
arb.applyImpulse()
}
}
done <- true
}
}
func MultiThreadGo() {
for i := 0; i < 8; i++ {
start <- true
}
for i := 0; i < 8; i++ {
<-done
}
}
func PrintTree(node *Node) {
if node != nil {
fmt.Println("Parent:")
fmt.Println(node.bb)
fmt.Println("A:")
PrintTree(node.A)
fmt.Println("B:")
PrintTree(node.B)
}
}
func (space *Space) Space() *Space {
return space
}
func (space *Space) Query(obj Indexable, aabb AABB, fnc SpatialIndexQueryFunc) {
space.activeShapes.Query(obj, aabb, fnc)
}
func (space *Space) QueryStatic(obj Indexable, aabb AABB, fnc SpatialIndexQueryFunc) {
space.staticShapes.Query(obj, aabb, fnc)
}
func (space *Space) SpacePointQueryFirst(point vect.Vect, layers Layer, group Group, checkSensors bool) (shape *Shape) {
found := false
pointFunc := func(a, b Indexable) {
if found {
return
}
shapeB := b.Shape()
shapeA := a.Shape()
if !queryRejectShapes(shapeA, shapeB) {
if !checkSensors && shapeB.IsSensor {
return
}
contacts := space.pullContactBuffer()
numContacts := collide(contacts, shapeA, shapeB)
if numContacts <= 0 {
space.pushContactBuffer(contacts)
return
}
shape = shapeB
found = true
}
}
dot := NewCircle(vect.Vector_Zero, 0.5)
dot.BB = dot.update(transform.NewTransform(point, 0))
dot.Layer = layers
dot.Group = group
space.staticShapes.Query(dot, dot.AABB(), pointFunc)
if found {
return
}
space.activeShapes.Query(dot, dot.AABB(), pointFunc)
return
}
func (space *Space) SpacePointQuery(point vect.Vect, layers Layer, group Group, checkSensors bool) (shapes []*Shape) {
pointFunc := func(a, b Indexable) {
shapeB := b.Shape()
shapeA := a.Shape()
if !queryRejectShapes(shapeA, shapeB) {
if !checkSensors && shapeB.IsSensor {
return
}
contacts := space.pullContactBuffer()
numContacts := collide(contacts, shapeA, shapeB)
if numContacts <= 0 {
space.pushContactBuffer(contacts)
return
}
shapes = append(shapes, shapeB)
}
}
dot := NewCircle(vect.Vector_Zero, 0.5)
dot.BB = dot.update(transform.NewTransform(point, 0))
dot.Layer = layers
dot.Group = group
space.staticShapes.Query(dot, dot.AABB(), pointFunc)
space.activeShapes.Query(dot, dot.AABB(), pointFunc)
return
}
/*
func (space *Space) SpacePointQuery(point vect.Vect, layers Layer, group Group, cpSpacePointQueryFunc func, void *data)
{
struct PointQueryContext context = {point, layers, group, func, data};
cpBB bb = cpBBNewForCircle(point, 0.0f);
cpSpaceLock(space); {
cpSpatialIndexQuery(space->activeShapes, &context, bb, (cpSpatialIndexQueryFunc)PointQuery, data);
cpSpatialIndexQuery(space->staticShapes, &context, bb, (cpSpatialIndexQueryFunc)PointQuery, data);
} cpSpaceUnlock(space, cpTrue);
}
*/
func (space *Space) ActiveBody(body *Body) error {
if body.IsRogue() {
return errors.New("Internal error: Attempting to activate a rouge body.")
}
space.Bodies = append(space.Bodies, body)
for _, shape := range body.Shapes {
space.staticShapes.Remove(shape)
space.activeShapes.Insert(shape)
}
/*
for _, arb := range body.Arbiters {
bodyA := arb.BodyA
if body == bodyA || bodyA.IsStatic() {
int numContacts = arb->numContacts;
cpContact *contacts = arb->contacts;
// Restore contact values back to the space's contact buffer memory
arb->contacts = cpContactBufferGetArray(space);
memcpy(arb->contacts, contacts, numContacts*sizeof(cpContact));
cpSpacePushContacts(space, numContacts);
// Reinsert the arbiter into the arbiter cache
arbHashID := hashPair(arb.BodyA.Hash()*20, arb.BodyB.Hash()*10)
space.cachedArbiters[arbHashID] = arb
// Update the arbiter's state
arb.stamp = space.stamp
space->arbiters = append(space->arbiters, arb)
//cpfree(contacts);
}
}
*/
return nil
}
func (space *Space) ProcessComponents(dt float32) {
sleep := math.IsInf(float64(space.sleepTimeThreshold), 0)
bodies := space.Bodies
_ = bodies
if sleep {
dv := space.idleSpeedThreshold
dvsq := float32(0)
if dv == 0 {
dvsq = dv * dv
} else {
dvsq = space.Gravity.LengthSqr() * dt * dt
}
for _, body := range space.Bodies {
keThreshold := float32(0)
if dvsq != 0 {
keThreshold = body.m * dvsq
}
body.node.IdleTime = 0
if body.KineticEnergy() <= keThreshold {
body.node.IdleTime += dt
}
}
}
for _, arb := range space.Arbiters {
a, b := arb.BodyA, arb.BodyB
_, _ = a, b
if sleep {
}
}
/*
// Awaken any sleeping bodies found and then push arbiters to the bodies' lists.
cpArray *arbiters = space->arbiters;
for(int i=0, count=arbiters->num; i<count; i++){
cpArbiter *arb = (cpArbiter*)arbiters->arr[i];
cpBody *a = arb->body_a, *b = arb->body_b;
if(sleep){
if((cpBodyIsRogue(b) && !cpBodyIsStatic(b)) || cpBodyIsSleeping(a)) cpBodyActivate(a);
if((cpBodyIsRogue(a) && !cpBodyIsStatic(a)) || cpBodyIsSleeping(b)) cpBodyActivate(b);
}
cpBodyPushArbiter(a, arb);
cpBodyPushArbiter(b, arb);
}
if(sleep){
// Bodies should be held active if connected by a joint to a non-static rouge body.
cpArray *constraints = space->constraints;
for(int i=0; i<constraints->num; i++){
cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
cpBody *a = constraint->a, *b = constraint->b;
if(cpBodyIsRogue(b) && !cpBodyIsStatic(b)) cpBodyActivate(a);
if(cpBodyIsRogue(a) && !cpBodyIsStatic(a)) cpBodyActivate(b);
}
// Generate components and deactivate sleeping ones
for(int i=0; i<bodies->num;){
cpBody *body = (cpBody*)bodies->arr[i];
if(ComponentRoot(body) == NULL){
// Body not in a component yet. Perform a DFS to flood fill mark
// the component in the contact graph using this body as the root.
FloodFillComponent(body, body);
// Check if the component should be put to sleep.
if(!ComponentActive(body, space->sleepTimeThreshold)){
cpArrayPush(space->sleepingComponents, body);
CP_BODY_FOREACH_COMPONENT(body, other) cpSpaceDeactivateBody(space, other);
// cpSpaceDeactivateBody() removed the current body from the list.
// Skip incrementing the index counter.
continue;
}
}
i++;
// Only sleeping bodies retain their component node pointers.
body->node.root = NULL;
body->node.next = NULL;
}
}
*/
}
// Creates an arbiter between the given shapes.
// If the shapes do not collide, arbiter.NumContact is zero.
func (space *Space) CreateArbiter(sa, sb *Shape) *Arbiter {
var arb *Arbiter
if len(space.ArbiterBuffer) > 0 {
arb, space.ArbiterBuffer = space.ArbiterBuffer[len(space.ArbiterBuffer)-1], space.ArbiterBuffer[:len(space.ArbiterBuffer)-1]
} else {
for i := 0; i < ArbiterBufferSize/2; i++ {
space.ArbiterBuffer = append(space.ArbiterBuffer, newArbiter())
}
arb = newArbiter()
}
//arb = newArbiter()
if sa.ShapeType() > sb.ShapeType() {
arb.ShapeA = sb
arb.ShapeB = sa
} else {
arb.ShapeA = sa
arb.ShapeB = sb
}
arb.BodyA = arb.ShapeA.Body
arb.BodyB = arb.ShapeB.Body
arb.Surface_vr = vect.Vect{}
arb.stamp = 0
//arb.nodeA = new(ArbiterEdge)
//arb.nodeB = new(ArbiterEdge)
arb.state = arbiterStateFirstColl
arb.Contacts = nil
arb.NumContacts = 0
arb.e = 0
arb.u = 0
return arb
}
func spaceCollideShapes(a, b Indexable, null Data) {
SpaceCollideShapes(a.Shape(), b.Shape(), a.Shape().space)
}
func SpaceCollideShapes(a, b *Shape, space *Space) {
if queryReject(a, b) {
return
}
if a.ShapeType() > b.ShapeType() {
a, b = b, a
}
//cpCollisionHandler *handler = cpSpaceLookupHandler(space, a->collision_type, b->collision_type);
sensor := a.IsSensor || b.IsSensor
//if(sensor && handler == &cpDefaultCollisionHandler) return;
//if sensor {
// return
//}
// Narrow-phase collision detection.
contacts := space.pullContactBuffer()
numContacts := collide(contacts, a, b)
if numContacts <= 0 {
space.pushContactBuffer(contacts)
return // Shapes are not colliding.
}
contacts = contacts[:numContacts]
// Get an arbiter from space->arbiterSet for the two shapes.
// This is where the persistant contact magic comes from.
arbHashID := newPair(a, b)
var arb *Arbiter
arb, exist := space.cachedArbiters[arbHashID]
if !exist {
arb = space.CreateArbiter(a, b)
}
var oldContacts []*Contact
if arb.Contacts != nil {
oldContacts = arb.Contacts
}
arb.update(a, b, contacts, numContacts)
if oldContacts != nil {
space.pushContactBuffer(oldContacts)
}
space.cachedArbiters[arbHashID] = arb
// Call the begin function first if it's the first step
if arb.state == arbiterStateFirstColl {
ignore := false
if b.Body.CallbackHandler != nil {
ignore = !b.Body.CallbackHandler.CollisionEnter(arb)
}
if a.Body.CallbackHandler != nil {
ignore = ignore || !a.Body.CallbackHandler.CollisionEnter(arb)
}
if ignore {
arb.Ignore() // permanently ignore the collision until separation
}
}
preSolveResult := true
// Ignore the arbiter if it has been flagged
if arb.state != arbiterStateIgnore {
// Call preSolve
if arb.ShapeA.Body.CallbackHandler != nil {
preSolveResult = arb.ShapeA.Body.CallbackHandler.CollisionPreSolve(arb)
}
if arb.ShapeB.Body.CallbackHandler != nil {
preSolveResult = preSolveResult || arb.ShapeB.Body.CallbackHandler.CollisionPreSolve(arb)
}
} else {
preSolveResult = false
}
if preSolveResult &&
// Process, but don't add collisions for sensors.
!sensor {
space.Arbiters = append(space.Arbiters, arb)
} else {
//cpSpacePopContacts(space, numContacts);
space.ContactBuffer = append(space.ContactBuffer, arb.Contacts)
arb.Contacts = nil
arb.NumContacts = 0
// Normally arbiters are set as used after calling the post-solve callback.
// However, post-solve callbacks are not called for sensors or arbiters rejected from pre-solve.
if arb.state != arbiterStateIgnore {
arb.state = arbiterStateNormal
}
}
// Time stamp the arbiter so we know it was used recently.
arb.stamp = space.stamp
}
func queryRejectShapes(a, b *Shape) bool {
return a == b || (a.Group != 0 && a.Group == b.Group) || (a.Layer&b.Layer) == 0 || (a.Body != nil && !a.Body.Enabled) || (b.Body != nil && !b.Body.Enabled)
}
func queryReject(a, b *Shape) bool {
//|| (a.Layer & b.Layer) != 0
return a.Body == b.Body || (a.Group != 0 && a.Group == b.Group) || (a.Layer&b.Layer) == 0 || !a.Body.Enabled || !b.Body.Enabled || (math.IsInf(float64(a.Body.m), 0) && math.IsInf(float64(b.Body.m), 0)) || !TestOverlapPtr(&a.BB, &b.BB)
}
type RayCast struct {
begin vect.Vect
dir vect.Vect
}
type RayCastHit struct {
Body *Body
MinT float32
}
const EPS = 0.00001
func RayAgainstPolygon(c *RayCast, poly *PolygonShape, outT *float32) bool {
for i, axis := range poly.TAxes {
cosAngle := vect.Dot(c.dir, axis.N)
if cosAngle < EPS && cosAngle >= -EPS {
return false
}
t := -(vect.Dot(c.begin, axis.N) - axis.D) / cosAngle
if t > 1.0 || t < 0.0 {
return false
}
//check if point belongs to polygon line
point := vect.Add(c.begin, vect.Mult(c.dir, t))
v1 := poly.TVerts[i]
v2 := poly.TVerts[(i+1)%poly.NumVerts]
polyDir := vect.Sub(v2, v1)
polyT := float32(-1.0)
if polyDir.X < EPS || polyDir.X > -EPS {
polyT = (point.Y - v1.Y) / polyDir.Y
} else {
polyT = (point.Y - v1.Y) / polyDir.Y
}
if polyT >= 0.0 && polyT <= 1.0 {
*outT = t
return true
}
}
return false
}
func RayAgainstCircle(cast *RayCast, circle *CircleShape, outT *float32) bool {
fromRayToCircle := vect.Sub(cast.begin, circle.Tc)
a := vect.Dot(cast.dir, cast.dir)
b := 2.0 * vect.Dot(fromRayToCircle, cast.dir)
c := vect.Dot(fromRayToCircle, fromRayToCircle) - circle.Radius*circle.Radius
D := b*b - 4.0*a*c
if D < 0.0 {
return false
}
D = float32(math.Sqrt(float64(D)))
t1 := (-b - D) / (2.0 * a)
t2 := (-b + D) / (2.0 * a)
//not belongs to our ray
if (t1 < 0.0 && t2 < 0.0) || (t1 > 1.0 && t2 > 1.0) {
return false
}
if t1 < t2 {
if t1 >= 0.0 {
*outT = t1
} else {
*outT = t2
}
} else {
if t2 >= 0.0 {
*outT = t2
} else {
*outT = t1
}
}
return true
}
func (space *Space) RayCastAll(begin vect.Vect, direction vect.Vect) []*RayCastHit {
hits := []*RayCastHit{}
rayCast := &RayCast{
begin: begin,
dir: direction,
}
end := begin
end.Add(direction)
var l, b, r, t float32
if begin.X > end.X {
l = end.X
r = begin.X
} else {
r = end.X
l = begin.X
}
if begin.Y > end.Y {
t = begin.Y
b = end.Y
} else {
b = begin.Y
t = end.Y
}
//first is nill
queryFunc := func(_, b Indexable) {
shape := b.Shape()
body := shape.Body
shapeType := shape.ShapeType()
if shapeType == ShapeType_Polygon {
polygon := shape.GetAsPolygon()
var t float32 = 0.0
if RayAgainstPolygon(rayCast, polygon, &t) {
hit := RayCastHit{
Body: body,
MinT: t,
}
hits = append(hits, &hit)
}
} else if shapeType == ShapeType_Circle {
circle := shape.GetAsCircle()
var t float32 = 0.0
if RayAgainstCircle(rayCast, circle, &t) {
hit := RayCastHit{
Body: body,
MinT: t,
}
hits = append(hits, &hit)
} else {
}
}
}
aabb := NewAABB(l, b, r, t)
space.activeShapes.Query(nil, aabb, queryFunc)
return hits
}
func (space *Space) AddBody(body *Body) *Body {
if body.space != nil {
println("This body is already added to a space and cannot be added to another.")
return body
}
body.space = space
if !body.IsStatic() {
space.Bodies = append(space.Bodies, body)
}
for _, shape := range body.Shapes {
if shape.space == nil {
space.AddShape(shape)
}
}
return body
}
func (space *Space) AddShape(shape *Shape) *Shape {
if shape.space != nil {
println("This shape is already added to a space and cannot be added to another.")
return shape
}
shape.space = space
shape.Update()
if shape.Body.IsStatic() {
space.staticShapes.Insert(shape)
} else {
space.activeShapes.Insert(shape)
}
return shape
}
func (space *Space) AddConstraint(constraint Constraint) Constraint {
con := constraint.Constraint()
if con.space != nil {
panic("This shape is already added to a space and cannot be added to another.")
}
con.BodyA.BodyActivate()
con.BodyB.BodyActivate()
space.Constraints = append(space.Constraints, constraint)
// Push onto the heads of the bodies' constraint lists
//cpBody *a = constraint->a, *b = constraint->b;
//constraint->next_a = a->constraintList; a->constraintList = constraint;
//constraint->next_b = b->constraintList; b->constraintList = constraint;
con.space = space
return constraint
}
func (space *Space) RemoveConstraint(constraint Constraint) {
con := constraint.Constraint()
if con.space == nil {
panic("Cannot remove a constraint that was not added to the space. (Removed twice maybe?)")
}
con.BodyA.BodyActivate()
con.BodyB.BodyActivate()
for i, c := range space.Constraints {
if constraint == c {
space.Constraints[i], space.Constraints = space.Constraints[len(space.Constraints)-1], space.Constraints[:len(space.Constraints)-1]
break
}
}
//cpBodyRemoveConstraint(constraint->a, constraint);
//cpBodyRemoveConstraint(constraint->b, constraint);
con.space = nil
con.BodyA = nil
con.BodyB = nil
}
func (space *Space) removeBody(body *Body) {
for _, shape := range body.Shapes {
space.RemoveShape(shape)
}
body.space = nil
body.Shapes = nil
body.UserData = nil
body.CallbackHandler = nil
body.UpdateVelocityFunc = nil
body.UpdatePositionFunc = nil
}
func (space *Space) RemoveBody(body *Body) {
if body == nil {
return
}
body.BodyActivate()
for i, pbody := range space.Bodies {
if pbody == body {
space.Bodies[i], space.Bodies = space.Bodies[len(space.Bodies)-1], space.Bodies[:len(space.Bodies)-1]
break
}
}
body.deleted = true
space.deleteBodies = append(space.deleteBodies, body)
}
func (space *Space) RemoveShape(shape *Shape) {
shape.space = nil
if shape.Body.IsStatic() {
space.staticShapes.Remove(shape)
} else {
space.activeShapes.Remove(shape)
}
shape.Body = nil
shape.UserData = nil
shape.ShapeClass = nil
}
func (space *Space) pullContactBuffer() (contacts []*Contact) {
if len(space.ContactBuffer) > 0 {
contacts, space.ContactBuffer = space.ContactBuffer[len(space.ContactBuffer)-1], space.ContactBuffer[:len(space.ContactBuffer)-1]
} else {
for i := 0; i < ContactBufferSize/2; i++ {
ccs := make([]*Contact, MaxPoints)
for i := 0; i < MaxPoints; i++ {
ccs[i] = &Contact{}
}
space.ContactBuffer = append(space.ContactBuffer, ccs)
}