Skip to content

Latest commit

 

History

History
96 lines (78 loc) · 4.05 KB

README.md

File metadata and controls

96 lines (78 loc) · 4.05 KB

The official PyTorch implementation of NexTune
Denoising Diffusion Model for Song Generation

This project features a song generation model using diffusion models. The model is capable of conditioning on song history, generating plausible future seconds in the song.

NexTune overall architecture

The repository is organized as follows:

Documentation

  • The diffusion process is modified from OpenAI's diffusion repos: GLIDE, ADM, and IDDPM.

Folder Structure

nextune-main/
├── configs/                           # Configuration files for training/sampling
│     ├── config_process.yaml          # Audio pre/post-processing configurations
│     ├── config_sample.yaml           # Sampling-specific configurations
│     └── config_train.yaml            # Training-specific configurations
├── diffusion/                         # Core diffusion modules
├── docs/                              # Documentation
│     ├── assets/                      # Documentation assets
│     └── README.md                    # Documentation overview and usage guide
├── models/                            # Model and architecture components
│     ├── backbones/                   # Backbone networks for NexTune
│     │   ├── model_nextune.py         # NexTune backbone model
│     │   └── layers.py                # Custom layers and utility functions
│     └── test_model_nextune.py        # Test model_td backbone efficiency
├── scripts/                           # Scripts for running tasks
│     ├── preprocess.py                # Audio pre-processing script
│     ├── postprocess.py               # Audio post-processing script
│     ├── sample.py                    # Sampling script
│     └── train.py                     # Training script
├── utils/                             # Utility functions and helper scripts
│     ├── metrics.py                   # Evaluation metrics functions
│     └── __init__.py                  # Makes utils a package
├── main.py                            # Main file to run train and sample
├── requirements.txt                   # Project dependencies
└── README.md                          # Project overview, setup, and usage instructions

Setup

First, download and set up the repo:

git clone https://github.com/TunAI-Lab/nextune.git
cd nextune

Then, create a python 3.11 conda env and install the requirements

# Install NexTune
conda create --name venv python=3.10
conda activate venv
pip install -r requirements.txt

Data Processing

To launch data pre-processing :

python -m scripts.preprocess --config configs/config_process.yaml

To launch data post-processing:

python -m scripts.postprocess --config configs/config_process.yaml

Training

We provide a training script for NexTune model in scripts/train.py.

To launch NexTune training with N GPUs on one node:

accelerate launch -m scripts.train --config configs/config_train.yaml

To launch NexTune training with 1 GPU (id=1):

accelerate launch --num-processes=1 --gpu_ids 1 -m scripts.train --config configs/config_train.yaml

Sampling and Evaluation

To sample trajectories from a pretrained NexTune model, run:

python -m scripts.sample --config configs/config_sample.yaml

The sampling results are automatically saved in the model's designated results directory, organized within the samples subfolder for easy access.