-
Notifications
You must be signed in to change notification settings - Fork 8
/
train_kitti.py
226 lines (179 loc) · 8.25 KB
/
train_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from cv2 import split
import torch
import sys
# from torch._C import LongStorageBase
sys.path.append("./Models")
from Models.utils import *
from Data.dataset import *
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
import math
from tqdm import tqdm
import numpy as np
import random
import argparse
import os
import json
import time
import numpy as np
import os
import json
import pdb
from PIL import Image
from Data.kitti_dataset import KittiDataset
from torch.utils.tensorboard import SummaryWriter
from Models.MotionSC import MotionSC
from Models.SSCNet_full import SSCNet_full
from Models.LMSCNet_SS import LMSCNet_SS
from Models.SSCNet import SSCNet
class_frequencies = np.array([5.41773033e+09, 1.57835390e+07, 1.25136000e+05, 1.18809000e+05,
6.46799000e+05, 8.21951000e+05, 2.62978000e+05, 2.83696000e+05,
2.04750000e+05, 6.16887030e+07, 4.50296100e+06, 4.48836500e+07,
2.26992300e+06, 5.68402180e+07, 1.57196520e+07, 1.58442623e+08,
2.06162300e+06, 3.69705220e+07, 1.15198800e+06, 3.34146000e+05])
def get_class_weights(freq):
'''
Cless weights being 1/log(fc) (https://arxiv.org/pdf/2008.10559.pdf)
'''
epsilon_w = 0.001 # eps to avoid zero division
weights = torch.from_numpy(1 / np.log(freq + epsilon_w))
return weights
# TODO: you may change these parameters if needed
# PARAMETERS
seed = 42
x_dim = 256
y_dim = 256
z_dim = 32
model_name = "MotionSC"
num_workers = 16
train_dir = "Data/kitti"
val_dir = "Data/kitti"
cylindrical = False
epoch_num = 100
remap = True
num_classes = 20
T = 1
binary_counts = True
transform_pose = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
weights = get_class_weights(class_frequencies).to(torch.float32)
criterion = nn.CrossEntropyLoss(weight=weights, ignore_index=255, reduction='mean').to(device=device)
# criterion = nn.CrossEntropyLoss(weight=weights.to(device))
coor_ranges = [0,-25.6,-2] + [51.2,25.6,4.4]
voxel_sizes = [abs(coor_ranges[3] - coor_ranges[0]) / x_dim,
abs(coor_ranges[4] - coor_ranges[1]) / y_dim,
abs(coor_ranges[5] - coor_ranges[2]) / z_dim] # since BEV
lr = 0.001
BETA1 = 0.9
BETA2 = 0.999
model, B, __, decayRate, resample_free = get_model(model_name, num_classes, voxel_sizes, coor_ranges, [x_dim, y_dim, z_dim], device, T=T)
# Need a smaller batch size sometimes
B = 4
model_name += "_" + str(num_classes) + "_KITTI_" + "_T" + str(T)
if binary_counts:
model_name += "B"
print("Running:", model_name)
# Data Loaders
carla_ds = KittiDataset(directory=train_dir, device=device, num_frames=T, random_flips=True, remap=remap, split='train', binary_counts=binary_counts, transform_pose=transform_pose)
dataloader = DataLoader(carla_ds, batch_size=B, shuffle=True, collate_fn=carla_ds.collate_fn, num_workers=num_workers)
val_ds = KittiDataset(directory=val_dir, device=device, num_frames=T, remap=remap, split='valid', binary_counts=binary_counts, transform_pose=transform_pose)
dataloader_val = DataLoader(val_ds, batch_size=B, shuffle=True, collate_fn=val_ds.collate_fn, num_workers=num_workers)
# test_ds = CarlaDataset(directory=val_dir, device=device, num_frames=T, cylindrical=cylindrical, remap=remap)
# dataloader_test = DataLoader(test_ds, batch_size=1, shuffle=False, collate_fn=test_ds.collate_fn, num_workers=num_workers)
writer = SummaryWriter("./Models/Runs/" + model_name)
save_dir = "./Models/Weights/" + model_name
if not os.path.exists(save_dir):
os.mkdir(save_dir)
if device == "cuda":
torch.cuda.empty_cache()
setup_seed(seed)
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(BETA1, BETA2))
my_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=decayRate)
train_count = 0
for epoch in range(epoch_num):
# Training
model.train()
for input_data, output, counts in dataloader:
optimizer.zero_grad()
input_data = torch.from_numpy(np.array(input_data)).to(device)
output = torch.from_numpy(np.array(output)).to(device)
counts = torch.from_numpy(np.array(counts)).to(device)
preds = model(input_data)
counts = counts.view(-1)
output = output.view(-1).long()
preds = preds.contiguous().view(-1, preds.shape[4])
# Criterion requires input (NxC), output (N) dimension
mask = counts == 0
output_masked = output[mask]
preds_masked = preds[mask]
new_mask = counts == 1
output[new_mask] = 255
if resample_free:
preds_masked, output_masked = resample_free_space(preds_masked, output_masked)
# loss = criterion(preds_masked, output_masked)
loss = criterion(preds, output)
loss.backward()
optimizer.step()
# Accuracy
with torch.no_grad():
probs = nn.functional.softmax(preds_masked, dim=1)
# preds_masked = np.argmax(probs.detach().cpu().numpy(), axis=1)
# outputs_np = output_masked.detach().cpu().numpy()
# accuracy = np.sum(preds_masked == outputs_np) / outputs_np.shape[0]
preds_masked = torch.argmax(probs.detach(), dim=1)
accuracy = torch.sum(preds_masked == output_masked.detach()) / output_masked.shape[0]
# num_correct += torch.sum(preds_masked == output_masked)
# num_total += output_masked.shape[0]
# Record
writer.add_scalar(model_name + '/Loss/Train', loss.item(), train_count)
writer.add_scalar(model_name + '/Accuracy/Train', accuracy, train_count)
train_count += input_data.shape[0]
# Save model, decreaser learning rate
my_lr_scheduler.step()
torch.save(model.state_dict(), os.path.join(save_dir, "Epoch" + str(epoch) + ".pt"))
# Validation
model.eval()
with torch.no_grad():
running_loss = 0.0
counter = 0
num_correct = 0
num_total = 0
all_intersections = np.zeros(num_classes)
all_unions = np.zeros(num_classes) + 1e-6 # SMOOTHING
for input_data, output, counts in dataloader_val:
optimizer.zero_grad()
input_data = torch.from_numpy(np.array(input_data)).to(device)
output = torch.from_numpy(np.array(output)).to(device)
counts = torch.from_numpy(np.array(counts)).to(device)
preds = model(input_data)
counts = counts.view(-1)
output = output.view(-1).long()
preds = preds.contiguous().view(-1, preds.shape[4])
# Criterion requires input (NxC), output (N) dimension
mask = counts == 0
output_masked = output[mask]
preds_masked = preds[mask]
loss = criterion(preds_masked, output_masked)
running_loss += loss.item()
counter += input_data.shape[0]
# Accuracy
probs = nn.functional.softmax(preds_masked, dim=1)
# preds_masked = np.argmax(probs.detach().cpu().numpy(), axis=1)
# outputs_np = output_masked.detach().cpu().numpy()
# num_correct += np.sum(preds_masked == outputs_np)
# num_total += outputs_np.shape[0]
# Optimzied validation speed
preds_masked = torch.argmax(probs.detach(), dim=1)
num_correct += torch.sum(preds_masked == output_masked)
num_total += output_masked.shape[0]
# intersection, union = iou_one_frame(torch.tensor(preds_masked), torch.tensor(output_masked), n_classes=num_classes)
intersection, union = iou_one_frame(preds_masked, output_masked, n_classes=num_classes)
all_intersections += intersection
all_unions += union
print(f'Eppoch Num: {epoch} ------ average val loss: {running_loss/counter}')
print(f'Eppoch Num: {epoch} ------ average val accuracy: {num_correct/num_total}')
print(f'Eppoch Num: {epoch} ------ val miou: {np.mean(all_intersections / all_unions)}')
writer.add_scalar(model_name + '/Loss/Val', running_loss/counter, epoch)
writer.add_scalar(model_name + '/Accuracy/Val', num_correct/num_total, epoch)
writer.add_scalar(model_name + '/mIoU/Val', np.mean(all_intersections / all_unions), epoch)
writer.close()