Skip to content

Latest commit

 

History

History
186 lines (136 loc) · 6.51 KB

README.md

File metadata and controls

186 lines (136 loc) · 6.51 KB

Homotopy Type Theory in Agda

Introduction

This repository contains a development of homotopy type theory and univalent foundations in Agda. The structure of the source code is described below.

Agda Options

This library is assuming the options --universe-polymorphism (on by default) and the experimental one --without-K.

Style and naming conventions

General

  • Line length should be reasonably short, not much more than 80 characters (TODO: except maybe sometimes for equational reasoning?)
  • Directories are in lowercase and modules are in CamelCase
  • Types are Capitalized unless they represent properties (like is-prop)
  • Terms are in lowercase-with-hyphens-between-words
  • Try to avoid names of free variables in identifiers

Identity type

The identity type is _==_, because _=_ is not allowed in Agda. For every identifier talking about the identity type, the single symbol = is used instead, because this is allowed by Agda. For instance the introduction rule for the identity type of Σ-types is pair= and not pair==.

Truncation levels

The numbering is the homotopy-theoretic numbering, parametrized by the type TLevel or ℕ₋₂ where

data TLevel : Type₀ where
  ⟨-2⟩ : TLevel
  S : TLevel → TLevel

ℕ₋₂ = TLevel

There are also terms ⟨-1⟩, ⟨0⟩, ⟨1⟩, ⟨2⟩ and ⟨_⟩ : ℕ → ℕ₋₂ with the obvious definitions.

Properties of types

Names of the form is-X or has-X, represent properties that can hold (or not) for some type A. Such a property can be parametrized by some arguments. The property is said to hold for a type A iff is-X args A is inhabited. The types is-X args A should be (h-)propositions.

Examples:

is-contr
is-prop
is-set
has-level       -- This one has one argument of type [ℕ₋₂]
has-all-paths   -- Every two points are equal
has-dec-eq      -- Decidable equality
  • The theorem stating that some type A (perhaps with arguments) has some property is-X is named A-is-X. The arguments of A-is-X are the arguments of is-X followed by the arguments of A.
  • Theorems stating that any type satisfying is-X also satisfies is-Y are named X-is-Y (and not is-X-is-Y which would mean is-Y (is-X A)).

Examples (only the nonimplicit arguments are given)

Unit-is-contr : is-contr Unit
Bool-is-set : is-set Bool
is-contr-is-prop : is-contr (is-prop A)
contr-is-prop : is-contr A → is-prop A
dec-eq-is-set : has-dec-eq A → is-set A
contr-has-all-paths : is-contr A → has-all-paths A

The term giving the most natural truncation level to some type constructor T is called T-level:

Σ-level : (n : ℕ₋₂) → (has-level n A) → ((x : A) → has-level n (P x))
       → has-level n (Σ A P)
×-level : (n : ℕ₋₂) → (has-level n A) → (has-level n B)
       → has-level n (A × B))
Π-level : (n : ℕ₋₂) → ((x : A) → has-level n (P x))
       → has-level n (Π A P)
→-level : (n : ℕ₋₂) → (has-level n B)
       → has-level n (A → B))

Functions and equivalences

  • A natural function between two types A and B is often called A-to-B
  • If f : A → B, the lemma asserting that f is an equivalence is called f-is-equiv
  • If f : A → B, the equivalence (f , f-is-equiv) is called f-equiv
  • As a special case of the previous point, A-to-B-equiv is usually called A-equiv-B instead

We have

A-to-B : A → B
A-to-B-is-equiv : is-equiv (A-to-B)
A-to-B-equiv : A ≃ B
A-equiv-B : A ≃ B

Negative types

The constructor of a record should usually be the uncapitalized name of the record. If N is a negative type (for instance a record) with introduction rule n and elimination rules e1, …, en, then

  • The identity type on N is called N=
  • The intros and elim rules for the identity type on N are called n= and e1=, …, en=
  • If necessary, the double identity type is called N== and similarly for the intros and elim.
  • The β-elimination rules for the identity type on N are called e1=-β, …, en=-β.
  • The η-expansion rule is called n=-η (TODO: maybe N=-η instead, or additionally?)
  • The equivalence/path between N= and _==_ {N} is called
  • N=-equiv/N=-path (TODO: n=-equiv/n=-path would maybe be more natural). Note that this equivalence is usually needed in the direction N= ≃ _==_ {N}

Precedence

Precedence convention

  1. Separators _$_ and arrows: 0
  2. Layout combinators (equational reasoning): 10-15
  3. Equalities, equivalences: 30
  4. Other relations, operators with line-level separators: 40
  5. Constructors (for example _,_): 60
  6. Binary operators (including type formers like _×_): 80
  7. Prefix operators: 100
  8. Postfix operators: 120

Structure of the source

The structure of the source is roughly the following:

Old library (directory old/)

The old library is still present, mainly to facilitate code transfer to the new library. Once everything has been ported to the new library, this directory will be removed.

Library (directory lib/)

The main library is more or less divided in three parts.

  • The first part is exported in the module lib.Basics and contains everything needed to make the second part compile
  • The second part is exported in the module lib.types.Types and contains everything you ever wanted to know about all type formers
  • The third part contains more advanced stuff.

The whole library is exported in the file HoTT, so every file using the library should contain open import HoTT.

TODO: describe more precisely each file

Homotopy (directory homotopy/)

This directory contains proofs of interesting homotopy-theoretic theorems.

TODO: describe more precisely each file

Experimental (directory experimental/)

This directory contains experimental things (as you can guess).

ACKNOWLEDGMENT

This material is partially based upon work supported by the National Science Foundation under Grant Number 1116703. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

This material is also partially based upon work supported by the Air Force Office of Scientific Research under Multidisciplinary Research Program of the University Research Initiative (MURI) Grant Number FA9550-15-1-0053.