From acb94894c42120a4be28d96afd4269f322749ec6 Mon Sep 17 00:00:00 2001 From: Jacob-Winch <96808846+Jacob-Winch@users.noreply.github.com> Date: Sun, 25 Feb 2024 21:44:50 -0700 Subject: [PATCH] Update nhl_positivity_index.md --- src/data/nhl_positivity_index.md | 36 +++++++++++++------------------- 1 file changed, 15 insertions(+), 21 deletions(-) diff --git a/src/data/nhl_positivity_index.md b/src/data/nhl_positivity_index.md index 8a60ceb..50f79d3 100644 --- a/src/data/nhl_positivity_index.md +++ b/src/data/nhl_positivity_index.md @@ -72,33 +72,27 @@ We tested the following 7 models: - [**ProsusAI/finbert**](https://huggingface.co/ProsusAI/finbert) - [**finiteautomata/bertweet-base-sentiment-analysis**](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) -matrix1 +![matrix1](../../src/images/NHL_Positivity_events/model1.png) +**Figure 1.1:** *A confusion matrix of the [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) model’s predicted labels against our labels. The model obtained an accuracy score of 79.2%.* -**Figure 1.1:** *A confusion matrix of the [**cardiffnlp/twitter-roberta-base-sentiment-latest**](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) model’s predicted labels against our labels. The model obtained an accuracy score of 79.2%.* +![matrix2](../../src/images/NHL_Positivity_events/model2.png) +**Figure 1.2:** *A confusion matrix of the [Distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) model’s predicted labels against our labels. The model obtained an accuracy score of 59.4%.* -matrix2 +![matrix3](../../src/images/NHL_Positivity_events/model3.png) +**Figure 1.3:** *A confusion matrix of the [lxyuan/distilbert-base-multilingual-cased-sentiments-student](https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student) model’s predicted labels against our labels. The model obtained an accuracy score of 56.8%.* -**Figure 1.2:** *A confusion matrix of the [**Distilbert-base-uncased-finetuned-sst-2-english**](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) model’s predicted labels against our labels. The model obtained an accuracy score of 59.4%.* +![matrix4](../../src/images/NHL_Positivity_events/model4.png) +**Figure 1.4:** *A confusion matrix of the [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) model’s predicted labels against our labels. The model obtained an accuracy score of 69.8%.* -matrix3 +![matrix5](../../src/images/NHL_Positivity_events/model5.png) +**Figure 1.5:** *A confusion matrix of the [mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis](https://huggingface.co/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis) model’s predicted labels against our labels. The model obtained an accuracy score of 37.0%.* -**Figure 1.3:** *A confusion matrix of the [**lxyuan/distilbert-base-multilingual-cased-sentiments-student**](https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student) model’s predicted labels against our labels. The model obtained an accuracy score of 56.8%.* +![matrix6](../../src/images/NHL_Positivity_events/model6.png) +**Figure 1.6:** *A confusion matrix of the [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) model’s predicted labels against our labels. The model obtained an accuracy score of 37.5%.* -matrix4 +![matrix7](../../src/images/NHL_Positivity_events/model7.png) +**Figure 1.7:** *A confusion matrix of the [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) model’s predicted labels against our labels. The model obtained an accuracy score of 70.3%.* -**Figure 1.4:** *A confusion matrix of the [**cardiffnlp/twitter-xlm-roberta-base-sentiment**](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) model’s predicted labels against our labels. The model obtained an accuracy score of 69.8%.* - -matrix5 - -**Figure 1.5:** *A confusion matrix of the [**mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis**](https://huggingface.co/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis) model’s predicted labels against our labels. The model obtained an accuracy score of 37.0%.* - -matrix6 - -**Figure 1.6:** *A confusion matrix of the [**ProsusAI/finbert**](https://huggingface.co/ProsusAI/finbert) model’s predicted labels against our labels. The model obtained an accuracy score of 37.5%.* - -matrix7 - -**Figure 1.7:** *A confusion matrix of the [**finiteautomata/bertweet-base-sentiment-analysis**](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) model’s predicted labels against our labels. The model obtained an accuracy score of 70.3%.* ## Manual Process of Labelling Data @@ -121,4 +115,4 @@ Nguyen, D. Q., Vu, T., & Nguyen, A. T. (2020). BERTweet: A pre-trained language ## Codebase -The codebase for the NHL Positivity index can be found [here](https://github.com/UndergraduateArtificialIntelligenceClub/NHL-Positivity-Index.) \ No newline at end of file +The codebase for the NHL Positivity index can be found [here](https://github.com/UndergraduateArtificialIntelligenceClub/NHL-Positivity-Index.)