-
Notifications
You must be signed in to change notification settings - Fork 0
/
svd.h
370 lines (310 loc) · 8.77 KB
/
svd.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#pragma once
/*=========================================================================
Program: touchless digitization GUI
Module: $RCSfile: svd.h,v $
Creator: Elvis C. S. Chen <[email protected]>
Language: C++
Author: $Author: Elvis Chen $
Date: $Date: 2016/08/22 14:50:30 $
Version: $Revision: 0.99 $
==========================================================================
Copyright (c) Elvis C. S. Chen, [email protected]
Use, modification and redistribution of the software, in source or
binary forms, are permitted provided that the following terms and
conditions are met:
1) Redistribution of the source code, in verbatim or modified
form, must retain the above copyright notice, this license,
the following disclaimer, and any notices that refer to this
license and/or the following disclaimer.
2) Redistribution in binary form must include the above copyright
notice, a copy of this license and the following disclaimer
in the documentation or with other materials provided with the
distribution.
3) Modified copies of the source code must be clearly marked as such,
and must not be misrepresented as verbatim copies of the source code.
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE SOFTWARE "AS IS"
WITHOUT EXPRESSED OR IMPLIED WARRANTY INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL ANY COPYRIGHT HOLDER OR OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE SOFTWARE UNDER THE TERMS OF THIS LICENSE
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, LOSS OF DATA OR DATA BECOMING INACCURATE
OR LOSS OF PROFIT OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF
THE USE OR INABILITY TO USE THE SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
=========================================================================*/
//
// Elvis Chen
//
// Department of Computing and Information Science
// Queen's University, Kingston, Ontario, Canada
//
// Feb. 20, 2000
//
//
// Filename: svd.h
//
// Initial implementation of SVD (singular value decomposition)
//
// given a matrix a[1..m][1..n], this routine computes its
// singular value decomposition, a = u*w*transpose(t).
// U is the same dimention as a, w is output vector of size [1..n],
// and the matrix v (not the transpose transpose(v)) is output as
// v[1..n][1..n]
//
// algorithms are taken from Numerical Recipes
//
//
// Usage:
//
// Matrix<double> A( 3, 3,
// " 7 2 3 "
// " 16 55 7 "
// " 7 8 9 " );
//
// Matrix<double> U, V;
// Vec<double> S;
//
// svdcmp(A, S, U, V);
//
#ifndef __SVD_H__
#define __SVD_H__
#include <cmath>
#include "matrix.h"
namespace echen
{
#ifndef SIGN
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#endif
template<class T>
T MAX(T a, T b)
{
T arg1 = a, arg2 = b;
return ((arg1 > arg2) ? arg1 : arg2);
}
template<class T>
T MIN(T a, T b)
{
T arg1 = a, arg2 = b;
return ((arg1 < arg2) ? arg1 : arg2);
}
template<class T>
T pythag(T a, T b)
{
// computes (a^2 + b^2)^(1/2) without destructive underflow or verflow
T absa = fabs(a);
T absb = fabs(b);
if (absa > absb)
return (absa * sqrt(1.0 + (absb / absa)*(absb / absa)));
else
return (absb == 0.0 ? 0.0 : absb*sqrt(1.0 + (absa / absb)*(absa / absb)));
}
template< class T >
void svdcmp(const Matrix<T> &u, Vec<T> &w, Matrix<T> &a, Matrix<T> &v)
{
// "u" is the given input matrix
// "w" is a vector of size n that contains the singular values
// of the diagonal matrix
//
// u = a*w*transpose(t);
//
Subscript m = u.num_rows();
Subscript n = u.num_cols();
Subscript i, j, jj, its, k, l, nm;
int flag;
T anorm, c, f, g, h, s, scale, x, y, z;
if ((v.num_rows() != n) || (v.num_cols() != n)) v.newsize(n, n);
if (w.dim() != n) w.newsize(n);
Vec<T> rv1(n);
a = u;
g = scale = anorm = 0.0;
//
// Householder reduction to bidiagonal form.
//
for (i = 1; i <= n; i++) {
l = i + 1;
rv1(i) = scale * g;
g = s = scale = 0.0;
if (i <= m) {
for (k = i; k <= m; k++) scale += fabs(a(k, i));
if (scale) {
for (k = i; k <= m; k++) {
a(k, i) /= scale;
s += a(k, i) * a(k, i);
}
f = a(i, i);
g = -SIGN(sqrt(s), f);
h = f * g - s;
a(i, i) = f - g;
for (j = l; j <= n; j++) {
for (s = 0.0, k = i; k <= m; k++) s += a(k, i) * a(k, j);
f = s / h;
for (k = i; k <= m; k++) a(k, j) += f * a(k, i);
}
for (k = i; k <= m; k++) a(k, i) *= scale;
}
}
w(i) = scale * g;
g = s = scale = 0.0;
if ((i <= m) && (i != n)) {
for (k = l; k <= n; k++) scale += fabs(a(i, k));
if (scale) {
for (k = l; k <= n; k++) {
a(i, k) /= scale;
s += a(i, k) * a(i, k);
}
f = a(i, l);
g = -SIGN(sqrt(s), f);
h = f * g - s;
a(i, l) = f - g;
for (k = l; k <= n; k++) rv1(k) = a(i, k) / h;
for (j = l; j <= m; j++) {
for (s = 0.0, k = l; k <= n; k++) s += a(j, k) * a(i, k);
for (k = l; k <= n; k++) a(j, k) += s * rv1(k);
}
for (k = l; k <= n; k++) a(i, k) *= scale;
}
}
anorm = MAX(anorm, (fabs(w(i)) + fabs(rv1(i))));
}
//
// Accumulation of right-hand transformations
//
for (i = n; i >= 1; i--) {
if (i < n) {
if (g) {
for (j = l; j <= n; j++) // double division to avoid possible underflow
v(j, i) = (a(i, j) / a(i, l)) / g;
for (j = l; j <= n; j++) {
for (s = 0.0, k = l; k <= n; k++) s += a(i, k) * v(k, j);
for (k = l; k <= n; k++) v(k, j) += s*v(k, i);
}
}
for (j = l; j <= n; j++) v(i, j) = v(j, i) = 0.0;
}
v(i, i) = 1.0;
g = rv1(i);
l = i;
}
for (i = MIN(m, n); i >= 1; i--) {
// Accumulation of left-hand transformations
l = i + 1;
g = w(i);
for (j = l; j <= n; j++) a(i, j) = 0.0;
if (g) {
g = 1.0 / g;
for (j = l; j <= n; j++) {
for (s = 0.0, k = l; k <= m; k++) s += a(k, i) * a(k, j);
f = (s / a(i, i)) * g;
for (k = i; k <= m; k++) a(k, j) += f * a(k, i);
}
for (j = i; j <= m; j++) a(j, i) *= g;
}
else for (j = i; j <= m; j++) a(j, i) = 0.0;
++a(i, i);
}
//
// Diagonalization of the bidiagonal form:
// Loop over singular values, and over allowed iterations
//
for (k = n; k >= 1; k--) {
for (its = 1; its <= 30; its++) {
flag = 1;
for (l = k; l >= 1; l--) {
// test for splitting
// note that rv1(1) is always zero
nm = l - 1;
if ((T)(fabs(rv1(l)) + anorm) == anorm) {
flag = 0;
break;
}
if ((T)(fabs(w(nm)) + anorm) == anorm) break;
}
if (flag) {
c = 0.0;
s = 1.0;
for (i = l; i <= k; i++) {
f = s*rv1(i);
rv1(i) = c * rv1(i);
if ((T)(fabs(f) + anorm) == anorm) break;
g = w(i);
h = pythag(f, g);
w(i) = h;
h = 1.0 / h;
c = g * h;
s = -f * h;
for (j = 1; j <= m; j++) {
y = a(j, nm);
z = a(j, i);
a(j, nm) = y * c + z * s;
a(j, i) = z * c - y * s;
}
}
}
z = w(k);
if (l == k) {
// Convergence
// singular value is made nonnegative
if (z < 0.0) {
w(k) = -z;
for (j = 1; j <= n; j++) v(j, k) = -v(j, k);
}
break;
}
assert(its != 30); // check this
// if (its == 30) break;
x = w(l);
nm = k - 1;
y = w(nm);
g = rv1(nm);
h = rv1(k);
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = pythag(f, 1.0);
f = ((x - z) * (x + z) + h*((y / (f + SIGN(g, f))) - h)) / x;
c = s = 1.0;
// Next QR transformation
for (j = l; j <= nm; j++) {
i = j + 1;
g = rv1(i);
y = w(i);
h = s * g;
g = c * g;
z = pythag(f, h);
rv1(j) = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y *= c;
for (jj = 1; jj <= n; jj++) {
x = v(jj, j);
z = v(jj, i);
v(jj, j) = x * c + z * s;
v(jj, i) = z * c - x * s;
}
z = pythag(f, h);
w(j) = z; // Rotation can be arbitrary if z = 0
if (z) {
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = c * g + s * y;
x = c * y - s * g;
for (jj = 1; jj <= m; jj++) {
y = a(jj, j);
z = a(jj, i);
a(jj, j) = y * c + z * s;
a(jj, i) = z * c - y * s;
}
}
rv1(l) = 0.0;
rv1(k) = f;
w(k) = x;
}
}
}
}
#endif // of __SVD_H__