-
Notifications
You must be signed in to change notification settings - Fork 4
/
multitask_amazon.py
60 lines (50 loc) · 2.03 KB
/
multitask_amazon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import random
import numpy as np
def multitask_data_generator(labels, labeled_node_list, select_array, k_spt, k_val, k_qry, n_way):
labels_local = labels
class_idx_list = []
train_class_list = []
val_class_list = []
test_class_list = []
for i in range(len(select_array)):
class_idx_list.append([])
train_class_list.append([])
val_class_list.append([])
test_class_list.append([])
for j in range(len(labeled_node_list)):
for i in range(len(select_array)):
if (labels_local[j] == select_array[i]):
class_idx_list[i].append(labeled_node_list[j])
# labels_local[j] = 0
usable_labels = []
for i in range(len(class_idx_list)):
if len(class_idx_list[i]) >= 30:
# if len(class_idx_list[i]) >= 100:
usable_labels.append(i)
random.shuffle(usable_labels)
task_list = []
for i in range(len(usable_labels) // n_way):
task_idx = usable_labels[i * n_way:(i + 1) * n_way]
task_list.append(task_idx)
for i in range(len(select_array)):
if i not in set(usable_labels):
continue
train_class_list[i] = np.random.choice(class_idx_list[i], k_spt, replace=False).tolist()
val_class_temp = [n1 for n1 in class_idx_list[i] if n1 not in train_class_list[i]]
val_class_list[i] = np.random.choice(val_class_temp, k_val, replace=False).tolist()
test_class_temp = [n1 for n1 in class_idx_list[i] if
(n1 not in train_class_list[i]) and (n1 not in val_class_list[i])]
test_class_list[i] = test_class_temp
train_idx = []
test_idx = []
val_idx = []
for i in range(len(task_list)):
train_idx.append([])
test_idx.append([])
val_idx.append([])
# print(task_list[i])
for j in task_list[i]:
train_idx[i] += train_class_list[j]
val_idx[i] += val_class_list[j]
test_idx[i] += test_class_list[j]
return task_list, train_idx, val_idx, test_idx