-
Notifications
You must be signed in to change notification settings - Fork 24
/
main.py
269 lines (232 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
By Xifeng Guo ([email protected]), May 13, 2020.
All rights reserved.
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from post_clustering import spectral_clustering, acc, nmi
import scipy.io as sio
import math
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super(Conv2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride, stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = ((out_height - 1) * self.stride[0] + self.kernel_size[0] - in_height)
pad_along_width = ((out_width - 1) * self.stride[1] + self.kernel_size[1] - in_width)
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom], 'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride`, i.e., the "SAME" padding mode in Tensorflow,
so the number of columns to delete:
pad = 2*padding - output_padding = kernel - stride
We can solve the above equation and get:
padding = ceil((kernel - stride)/2), and
output_padding = 2*padding - (kernel - stride) which is either 1 or 0.
But to get the same result with Tensorflow, we should delete values by ourselves instead of using padding and
output_padding in ConvTranspose2d.
To get there, we check the following conditions:
If pad = kernel - stride is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad = kernel - stride is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves; or we can use ConvTranspose2d to delete `pad - 1` by setting `padding=(pad - 1) / 2` and `ouput_padding=0`
and then delete the last row/column of the resulting tensor by ourselves.
Here we implement the former case.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
And this module can only output a tensor with shape `stride * size_input`.
A more flexible module can be found in `yaleb.py` which can output arbitrary size as specified.
"""
def __init__(self, kernel_size, stride):
super(ConvTranspose2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride, stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = self.kernel_size[0] - self.stride[0]
pad_width = self.kernel_size[1] - self.stride[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left: in_width - pad_right]
class ConvAE(nn.Module):
def __init__(self, channels, kernels):
"""
:param channels: a list containing all channels including the input image channel (1 for gray, 3 for RGB)
:param kernels: a list containing all kernel sizes, it should satisfy: len(kernels) = len(channels) - 1.
"""
super(ConvAE, self).__init__()
assert isinstance(channels, list) and isinstance(kernels, list)
self.encoder = nn.Sequential()
for i in range(1, len(channels)):
# Each layer will divide the size of feature map by 2
self.encoder.add_module('pad%d' % i, Conv2dSamePad(kernels[i - 1], 2))
self.encoder.add_module('conv%d' % i,
nn.Conv2d(channels[i - 1], channels[i], kernel_size=kernels[i - 1], stride=2))
self.encoder.add_module('relu%d' % i, nn.ReLU(True))
self.decoder = nn.Sequential()
channels = list(reversed(channels))
kernels = list(reversed(kernels))
for i in range(len(channels) - 1):
# Each layer will double the size of feature map
self.decoder.add_module('deconv%d' % (i + 1),
nn.ConvTranspose2d(channels[i], channels[i + 1], kernel_size=kernels[i], stride=2))
self.decoder.add_module('padd%d' % i, ConvTranspose2dSamePad(kernels[i], 2))
self.decoder.add_module('relud%d' % i, nn.ReLU(True))
def forward(self, x):
h = self.encoder(x)
y = self.decoder(h)
return y
class SelfExpression(nn.Module):
def __init__(self, n):
super(SelfExpression, self).__init__()
self.Coefficient = nn.Parameter(1.0e-8 * torch.ones(n, n, dtype=torch.float32), requires_grad=True)
def forward(self, x): # shape=[n, d]
y = torch.matmul(self.Coefficient, x)
return y
class DSCNet(nn.Module):
def __init__(self, channels, kernels, num_sample):
super(DSCNet, self).__init__()
self.n = num_sample
self.ae = ConvAE(channels, kernels)
self.self_expression = SelfExpression(self.n)
def forward(self, x): # shape=[n, c, w, h]
z = self.ae.encoder(x)
# self expression layer, reshape to vectors, multiply Coefficient, then reshape back
shape = z.shape
z = z.view(self.n, -1) # shape=[n, d]
z_recon = self.self_expression(z) # shape=[n, d]
z_recon_reshape = z_recon.view(shape)
x_recon = self.ae.decoder(z_recon_reshape) # shape=[n, c, w, h]
return x_recon, z, z_recon
def loss_fn(self, x, x_recon, z, z_recon, weight_coef, weight_selfExp):
loss_ae = F.mse_loss(x_recon, x, reduction='sum')
loss_coef = torch.sum(torch.pow(self.self_expression.Coefficient, 2))
loss_selfExp = F.mse_loss(z_recon, z, reduction='sum')
loss = loss_ae + weight_coef * loss_coef + weight_selfExp * loss_selfExp
return loss
def train(model, # type: DSCNet
x, y, epochs, lr=1e-3, weight_coef=1.0, weight_selfExp=150, device='cuda',
alpha=0.04, dim_subspace=12, ro=8, show=10):
optimizer = optim.Adam(model.parameters(), lr=lr)
if not isinstance(x, torch.Tensor):
x = torch.tensor(x, dtype=torch.float32, device=device)
x = x.to(device)
if isinstance(y, torch.Tensor):
y = y.to('cpu').numpy()
K = len(np.unique(y))
for epoch in range(epochs):
x_recon, z, z_recon = model(x)
loss = model.loss_fn(x, x_recon, z, z_recon, weight_coef=weight_coef, weight_selfExp=weight_selfExp)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % show == 0 or epoch == epochs - 1:
C = model.self_expression.Coefficient.detach().to('cpu').numpy()
y_pred = spectral_clustering(C, K, dim_subspace, alpha, ro)
print('Epoch %02d: loss=%.4f, acc=%.4f, nmi=%.4f' %
(epoch, loss.item() / y_pred.shape[0], acc(y, y_pred), nmi(y, y_pred)))
if __name__ == "__main__":
import argparse
import warnings
parser = argparse.ArgumentParser(description='DSCNet')
parser.add_argument('--db', default='coil20',
choices=['coil20', 'coil100', 'orl', 'reuters10k', 'stl'])
parser.add_argument('--show-freq', default=10, type=int)
parser.add_argument('--ae-weights', default=None)
parser.add_argument('--save-dir', default='results')
args = parser.parse_args()
print(args)
import os
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
db = args.db
if db == 'coil20':
# load data
data = sio.loadmat('datasets/COIL20.mat')
x, y = data['fea'].reshape((-1, 1, 32, 32)), data['gnd']
y = np.squeeze(y - 1) # y in [0, 1, ..., K-1]
# network and optimization parameters
num_sample = x.shape[0]
channels = [1, 15]
kernels = [3]
epochs = 40
weight_coef = 1.0
weight_selfExp = 75
# post clustering parameters
alpha = 0.04 # threshold of C
dim_subspace = 12 # dimension of each subspace
ro = 8 #
warnings.warn("You can uncomment line#64 in post_clustering.py to get better result for this dataset!")
elif db == 'coil100':
# load data
data = sio.loadmat('datasets/COIL100.mat')
x, y = data['fea'].reshape((-1, 1, 32, 32)), data['gnd']
y = np.squeeze(y - 1) # y in [0, 1, ..., K-1]
# network and optimization parameters
num_sample = x.shape[0]
channels = [1, 50]
kernels = [5]
epochs = 120
weight_coef = 1.0
weight_selfExp = 15
# post clustering parameters
alpha = 0.04 # threshold of C
dim_subspace = 12 # dimension of each subspace
ro = 8 #
elif db == 'orl':
# load data
data = sio.loadmat('datasets/ORL_32x32.mat')
x, y = data['fea'].reshape((-1, 1, 32, 32)), data['gnd']
y = np.squeeze(y - 1) # y in [0, 1, ..., K-1]
# network and optimization parameters
num_sample = x.shape[0]
channels = [1, 3, 3, 5]
kernels = [3, 3, 3]
epochs = 700
weight_coef = 2.0
weight_selfExp = 0.2
# post clustering parameters
alpha = 0.2 # threshold of C
dim_subspace = 3 # dimension of each subspace
ro = 1 #
dscnet = DSCNet(num_sample=num_sample, channels=channels, kernels=kernels)
dscnet.to(device)
# load the pretrained weights which are provided by the original author in
# https://github.com/panji1990/Deep-subspace-clustering-networks
ae_state_dict = torch.load('pretrained_weights_original/%s.pkl' % db)
dscnet.ae.load_state_dict(ae_state_dict)
print("Pretrained ae weights are loaded successfully.")
train(dscnet, x, y, epochs, weight_coef=weight_coef, weight_selfExp=weight_selfExp,
alpha=alpha, dim_subspace=dim_subspace, ro=ro, show=args.show_freq, device=device)
torch.save(dscnet.state_dict(), args.save_dir + '/%s-model.ckp' % args.db)