-
Notifications
You must be signed in to change notification settings - Fork 0
/
groups.py
500 lines (415 loc) · 16.2 KB
/
groups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# coding: utf-8
# The MIT License (MIT)
# Copyright (c) 2011-2012 MIT & LBNL
from __future__ import division, unicode_literals
"""
Defines SymmetryGroup parent class and PointGroup and SpaceGroup classes.
Shyue Ping Ong thanks Marc De Graef for his generous sharing of his
SpaceGroup data as published in his textbook "Structure of Materials".
"""
__author__ = "Shyue Ping Ong"
__copyright__ = "Copyright 2013, The Materials Virtual Lab"
__version__ = "0.1"
__maintainer__ = "Shyue Ping Ong"
__email__ = "[email protected]"
__date__ = "4/4/14"
import os
from itertools import product
from fractions import Fraction
from abc import ABCMeta, abstractproperty
from collections import Sequence
import numpy as np
import warnings
from monty.serialization import loadfn
from Symmetry_Operation import SymmOp
from monty.design_patterns import cached_class
SYMM_DATA = loadfn(os.path.join(os.path.dirname(__file__), "symm_data.yaml"))
GENERATOR_MATRICES = SYMM_DATA["generator_matrices"]
POINT_GROUP_ENC = SYMM_DATA["point_group_encoding"]
SPACE_GROUP_ENC = SYMM_DATA["space_group_encoding"]
ABBREV_SPACE_GROUP_MAPPING = SYMM_DATA["abbreviated_spacegroup_symbols"]
TRANSLATIONS = {k: Fraction(v) for k, v in SYMM_DATA["translations"].items()}
FULL_SPACE_GROUP_MAPPING = {
v["full_symbol"]: k for k, v in SYMM_DATA["space_group_encoding"].items()}
MAXIMAL_SUBGROUPS = {int(k): v
for k, v in SYMM_DATA["maximal_subgroups"].items()}
class SymmetryGroup(Sequence):
__metaclass__ = ABCMeta
@abstractproperty
def symmetry_ops(self):
pass
def __contains__(self, item):
for i in self.symmetry_ops:
if np.allclose(i.affine_matrix, item.affine_matrix):
return True
return False
def __hash__(self):
return self.__len__()
def __getitem__(self, item):
return self.symmetry_ops[item]
def __len__(self):
return len(self.symmetry_ops)
def is_subgroup(self, supergroup):
"""
True if this group is a subgroup of the supplied group.
Args:
supergroup (SymmetryGroup): Supergroup to test.
Returns:
True if this group is a subgroup of the supplied group.
"""
warnings.warn("This is not fully functional. Only trivial subsets are tested right now. ")
return set(self.symmetry_ops).issubset(supergroup.symmetry_ops)
def is_supergroup(self, subgroup):
"""
True if this group is a supergroup of the supplied group.
Args:
subgroup (SymmetryGroup): Subgroup to test.
Returns:
True if this group is a supergroup of the supplied group.
"""
warnings.warn("This is not fully functional. Only trivial subsets are tested right now. ")
return set(subgroup.symmetry_ops).issubset(self.symmetry_ops)
@cached_class
class PointGroup(SymmetryGroup):
"""
Class representing a Point Group, with generators and symmetry operations.
.. attribute:: symbol
Full International or Hermann-Mauguin Symbol.
.. attribute:: generators
List of generator matrices. Note that 3x3 matrices are used for Point
Groups.
.. attribute:: symmetry_ops
Full set of symmetry operations as matrices.
"""
def __init__(self, int_symbol):
"""
Initializes a Point Group from its international symbol.
Args:
int_symbol (str): International or Hermann-Mauguin Symbol.
"""
self.symbol = int_symbol
self.generators = [GENERATOR_MATRICES[c]
for c in POINT_GROUP_ENC[int_symbol]]
self._symmetry_ops = set([SymmOp.from_rotation_and_translation(m)
for m in self._generate_full_symmetry_ops()])
self.order = len(self._symmetry_ops)
@property
def symmetry_ops(self):
return self._symmetry_ops
def _generate_full_symmetry_ops(self):
symm_ops = list(self.generators)
new_ops = self.generators
while len(new_ops) > 0:
gen_ops = []
for g1, g2 in product(new_ops, symm_ops):
op = np.dot(g1, g2)
if not in_array_list(symm_ops, op):
gen_ops.append(op)
symm_ops.append(op)
new_ops = gen_ops
return symm_ops
def get_orbit(self, p, index = 0, tol=1e-5):
"""
Returns the orbit for a point.
Args:
p: Point as a 3x1 array.
tol: Tolerance for determining if sites are the same. 1e-5 should
be sufficient for most purposes. Set to 0 for exact matching
(and also needed for symbolic orbits).
Returns:
([array]) Orbit for point.
"""
p = np.array(p)
pool = np.array([[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]])
p = p[pool[index]]
orbit = []
for o in self.symmetry_ops:
pp = o.operate(p)
if not in_array_list(orbit, pp, tol=tol):
orbit.append(pp)
orbit = np.array(orbit)
orbit = orbit[:, np.argsort(pool[index])]
return orbit
@cached_class
class SpaceGroup(SymmetryGroup):
"""
Class representing a SpaceGroup.
.. attribute:: symbol
Full International or Hermann-Mauguin Symbol.
.. attribute:: int_number
International number
.. attribute:: generators
List of generator matrices. Note that 4x4 matrices are used for Space
Groups.
.. attribute:: order
Order of Space Group
"""
# Contains the entire list of supported Space Group symbols.
SG_SYMBOLS = tuple(SPACE_GROUP_ENC.keys())
def __init__(self, int_symbol):
"""
Initializes a Space Group from its full or abbreviated international
symbol. Only standard settings are supported.
Args:
int_symbol (str): Full International (e.g., "P2/m2/m2/m") or
Hermann-Mauguin Symbol ("Pmmm") or abbreviated symbol. The
notation is a LaTeX-like string, with screw axes being
represented by an underscore. For example, "P6_3/mmc". Note
that for rhomohedral cells, the hexagonal setting can be
accessed by adding a "H", e.g., "R-3mH".
"""
if int_symbol not in SPACE_GROUP_ENC and int_symbol not in \
ABBREV_SPACE_GROUP_MAPPING and int_symbol not in \
FULL_SPACE_GROUP_MAPPING:
raise ValueError("Bad international symbol %s" % int_symbol)
elif int_symbol in SPACE_GROUP_ENC:
int_symbol = int_symbol
elif int_symbol in ABBREV_SPACE_GROUP_MAPPING:
int_symbol = ABBREV_SPACE_GROUP_MAPPING[int_symbol]
elif int_symbol in FULL_SPACE_GROUP_MAPPING:
int_symbol = FULL_SPACE_GROUP_MAPPING[int_symbol]
data = SPACE_GROUP_ENC[int_symbol]
if int_symbol in ABBREV_SPACE_GROUP_MAPPING.values():
for k, v in ABBREV_SPACE_GROUP_MAPPING.items():
if v == int_symbol:
self.symbol = k
else:
self.symbol = int_symbol
if int_symbol == 'Ia-3':
self.symbol = int_symbol
# TODO: Support different origin choices.
enc = list(data["enc"])
inversion = int(enc.pop(0))
ngen = int(enc.pop(0))
symm_ops = [np.eye(4)]
if inversion:
symm_ops.append(np.array(
[[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0],
[0, 0, 0, 1]]))
for i in range(ngen):
m = np.eye(4)
m[:3, :3] = GENERATOR_MATRICES[enc.pop(0)]
m[0, 3] = TRANSLATIONS[enc.pop(0)]
m[1, 3] = TRANSLATIONS[enc.pop(0)]
m[2, 3] = TRANSLATIONS[enc.pop(0)]
symm_ops.append(m)
self.generators = symm_ops
self.full_symbol = data["full_symbol"]
self.int_number = data["int_number"]
self.order = data["order"]
self.patterson_symmetry = data["patterson_symmetry"]
self.point_group = data["point_group"]
self._symmetry_ops = None
def _generate_full_symmetry_ops(self):
symm_ops = np.array(self.generators)
for op in symm_ops:
op[0:3, 3] = np.mod(op[0:3, 3], 1)
new_ops = symm_ops
while len(new_ops) > 0 and len(symm_ops) < self.order:
gen_ops = []
for g in new_ops:
temp_ops = np.einsum('ijk,kl', symm_ops, g)
for op in temp_ops:
op[0:3, 3] = np.mod(op[0:3, 3], 1)
ind = np.where(np.abs(1 - op[0:3, 3]) < 1e-5)
op[ind, 3] = 0
if not in_array_list(symm_ops, op):
gen_ops.append(op)
symm_ops = np.append(symm_ops, [op], axis=0)
new_ops = gen_ops
assert len(symm_ops) == self.order
return symm_ops
@property
def symmetry_ops(self):
"""
Full set of symmetry operations as matrices. Lazily initialized as
generation sometimes takes a bit of time.
"""
if self._symmetry_ops is None:
self._symmetry_ops = [
SymmOp(m) for m in self._generate_full_symmetry_ops()]
return self._symmetry_ops
def get_orbit(self, p, tol=5e-4):
"""
Returns the orbit for a point.
Args:
p: Point as a 3x1 array.
tol: Tolerance for determining if sites are the same. 1e-5 should
be sufficient for most purposes. Set to 0 for exact matching
(and also needed for symbolic orbits).
Returns:
([array]) Orbit for point.
"""
orbit = []
for o in self.symmetry_ops:
pp = o.operate(p)
pp = np.mod(np.round(pp, decimals=10), 1)
pp[np.where(np.abs(1 - pp) < tol)] = 0
if not in_array_list(orbit, pp, tol=tol):
orbit.append(pp)
return orbit
# def get_wyckoff_letter(self, pos, tol = 5e-4):
# """
# Returns the wyckoff letter of a position.
# Args:
# pos: Position as a 3x1 array.
# Returns:
# String of wyckoff letter
# """
# homosites = self.get_orbit(pos, tol)
# multiplicity = len(homosites)
# is_found = False
# for site in homosites:
# if special_positions(self.symbol, multiplicity, site):
# is_found = True
# assign = site
# break
# if is_found:
# letter = special_positions(self.symbol, multiplicity, assign)
# return letter
def is_compatible(self, lattice, tol=1e-5, angle_tol=5):
"""
Checks whether a particular lattice is compatible with the
*conventional* unit cell.
Args:
lattice (Lattice): A Lattice.
tol (float): The tolerance to check for equality of lengths.
angle_tol (float): The tolerance to check for equality of angles
in degrees.
"""
abc, angles = lattice.lengths_and_angles
crys_system = self.crystal_system
def check(param, ref, tolerance):
return all([abs(i - j) < tolerance for i, j in zip(param, ref)
if j is not None])
if crys_system == "cubic":
a = abc[0]
return check(abc, [a, a, a], tol) and\
check(angles, [90, 90, 90], angle_tol)
elif crys_system == "hexagonal" or (crys_system == "trigonal" and
self.symbol.endswith("H")):
a = abc[0]
return check(abc, [a, a, None], tol)\
and check(angles, [90, 90, 120], angle_tol)
elif crys_system == "trigonal":
a = abc[0]
return check(abc, [a, a, a], tol)
elif crys_system == "tetragonal":
a = abc[0]
return check(abc, [a, a, None], tol) and\
check(angles, [90, 90, 90], angle_tol)
elif crys_system == "orthorhombic":
return check(angles, [90, 90, 90], angle_tol)
elif crys_system == "monoclinic":
return check(angles, [90, None, 90], angle_tol)
return True
@property
def crystal_system(self):
i = self.int_number
if i <= 2:
return "triclinic"
elif i <= 15:
return "monoclinic"
elif i <= 74:
return "orthorhombic"
elif i <= 142:
return "tetragonal"
elif i <= 167:
return "trigonal"
elif i <= 194:
return "hexagonal"
else:
return "cubic"
def is_subgroup(self, supergroup):
"""
True if this space group is a subgroup of the supplied group.
Args:
group (Spacegroup): Supergroup to test.
Returns:
True if this space group is a subgroup of the supplied group.
"""
if len(supergroup.symmetry_ops) < len(self.symmetry_ops):
return False
groups = [[supergroup.int_number]]
all_groups = [supergroup.int_number]
count = 0
while True:
new_sub_groups = set()
for i in groups[-1]:
new_sub_groups.update([j for j in MAXIMAL_SUBGROUPS[i] if j
not in all_groups])
if self.int_number in new_sub_groups:
return True
elif len(new_sub_groups) == 0:
break
else:
groups.append(new_sub_groups)
all_groups.extend(new_sub_groups)
return False
def is_supergroup(self, subgroup):
"""
True if this space group is a supergroup of the supplied group.
Args:
subgroup (Spacegroup): Subgroup to test.
Returns:
True if this space group is a supergroup of the supplied group.
"""
return subgroup.is_subgroup(self)
@classmethod
def from_int_number(cls, int_number, hexagonal=True):
"""
Obtains a SpaceGroup from its international number.
Args:
int_number (int): International number.
hexagonal (bool): For rhombohedral groups, whether to return the
hexagonal setting (default) or rhombohedral setting.
Returns:
(SpaceGroup)
"""
return SpaceGroup(sg_symbol_from_int_number(int_number,
hexagonal=hexagonal))
def __str__(self):
return "Spacegroup %s with international number %d and order %d" % (
self.symbol, self.int_number, len(self.symmetry_ops))
def sg_symbol_from_int_number(int_number, hexagonal=True):
"""
Obtains a SpaceGroup name from its international number.
Args:
int_number (int): International number.
hexagonal (bool): For rhombohedral groups, whether to return the
hexagonal setting (default) or rhombohedral setting.
Returns:
(str) Spacegroup symbol
"""
syms = []
for n, v in SPACE_GROUP_ENC.items():
if v["int_number"] == int_number:
syms.append(n)
if len(syms) == 0:
raise ValueError("Invalid international number!")
if len(syms) == 2:
if hexagonal:
syms = list(filter(lambda s: s.endswith("H"), syms))
else:
syms = list(filter(lambda s: not s.endswith("H"), syms))
return syms.pop()
def in_array_list(array_list, a, tol=1e-5):
"""
Extremely efficient nd-array comparison using numpy's broadcasting. This
function checks if a particular array a, is present in a list of arrays.
It works for arrays of any size, e.g., even matrix searches.
Args:
array_list ([array]): A list of arrays to compare to.
a (array): The test array for comparison.
tol (float): The tolerance. Defaults to 1e-5. If 0, an exact match is
done.
Returns:
(bool)
"""
if len(array_list) == 0:
return False
axes = tuple(range(1, a.ndim + 1))
if not tol:
return np.any(np.all(np.equal(array_list, a[None, :]), axes))
else:
return np.any(np.sum(np.abs(array_list - a[None, :]), axes) < tol)