In this tutorial, we will introduce some methods about how to customize your own dataset by reorganizing data and mixing dataset for the project.
The simplest way is to convert your dataset to existing dataset formats (RawframeDataset or VideoDataset).
There are three kinds of annotation files.
-
rawframe annotation
The annotation of a rawframe dataset is a text file with multiple lines, and each line indicates
frame_directory
(relative path) of a video,total_frames
of a video and thelabel
of a video, which are split by a whitespace.Here is an example.
some/directory-1 163 1 some/directory-2 122 1 some/directory-3 258 2 some/directory-4 234 2 some/directory-5 295 3 some/directory-6 121 3
-
video annotation
The annotation of a video dataset is a text file with multiple lines, and each line indicates a sample video with the
filepath
(relative path) andlabel
, which are split by a whitespace.Here is an example.
some/path/000.mp4 1 some/path/001.mp4 1 some/path/002.mp4 2 some/path/003.mp4 2 some/path/004.mp4 3 some/path/005.mp4 3
-
ActivityNet annotation The annotation of ActivityNet dataset is a json file. Each key is a video name and the corresponding value is the meta data and annotation for the video.
Here is an example.
{ "video1": { "duration_second": 211.53, "duration_frame": 6337, "annotations": [ { "segment": [ 30.025882995319815, 205.2318595943838 ], "label": "Rock climbing" } ], "feature_frame": 6336, "fps": 30.0, "rfps": 29.9579255898 }, "video2": { "duration_second": 26.75, "duration_frame": 647, "annotations": [ { "segment": [ 2.578755070202808, 24.914101404056165 ], "label": "Drinking beer" } ], "feature_frame": 624, "fps": 24.0, "rfps": 24.1869158879 } }
There are two ways to work with custom datasets.
-
online conversion
You can write a new Dataset class inherited from BaseDataset, and overwrite three methods
load_annotations(self)
,evaluate(self, results, metrics, logger)
anddump_results(self, results, out)
, like RawframeDataset, VideoDataset or ActivityNetDataset. -
offline conversion
You can convert the annotation format to the expected format above and save it to a pickle or json file, then you can simply use
RawframeDataset
,VideoDataset
orActivityNetDataset
.
After the data pre-processing, the users need to further modify the config files to use the dataset. Here is an example of using a custom dataset in rawframe format.
In configs/task/method/my_custom_config.py
:
...
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'path/to/your/root'
data_root_val = 'path/to/your/root_val'
ann_file_train = 'data/custom/custom_train_list.txt'
ann_file_val = 'data/custom/custom_val_list.txt'
ann_file_test = 'data/custom/custom_val_list.txt'
...
data = dict(
videos_per_gpu=32,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
...),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
...),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
...))
...
We use this way to support Rawframe dataset.
Assume the annotation is in a new format in text files, and the image file name is of template like img_00005.jpg
The video annotations are stored in text file annotation.txt
as following
directory,total frames,class
D32_1gwq35E,299,66
-G-5CJ0JkKY,249,254
T4h1bvOd9DA,299,33
4uZ27ivBl00,299,341
0LfESFkfBSw,249,186
-YIsNpBEx6c,299,169
We can create a new dataset in mmaction/datasets/my_dataset.py
to load the data.
import copy
import os.path as osp
import mmcv
from .base import BaseDataset
from .registry import DATASETS
@DATASETS.register_module()
class MyDataset(BaseDataset):
def __init__(self,
ann_file,
pipeline,
data_prefix=None,
test_mode=False,
filename_tmpl='img_{:05}.jpg'):
super(MyDataset, self).__init__(ann_file, pipeline, test_mode)
self.filename_tmpl = filename_tmpl
def load_annotations(self):
video_infos = []
with open(self.ann_file, 'r') as fin:
for line in fin:
if line.startswith("directory"):
continue
frame_dir, total_frames, label = line.split(',')
if self.data_prefix is not None:
frame_dir = osp.join(self.data_prefix, frame_dir)
video_infos.append(
dict(
frame_dir=frame_dir,
total_frames=int(total_frames),
label=int(label)))
return video_infos
def prepare_train_frames(self, idx):
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
return self.pipeline(results)
def prepare_test_frames(self, idx):
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
return self.pipeline(results)
def evaluate(self,
results,
metrics='top_k_accuracy',
topk=(1, 5),
logger=None):
pass
Then in the config, to use MyDataset
you can modify the config as the following
dataset_A_train = dict(
type='MyDataset',
ann_file = ann_file_train,
pipeline=train_pipeline
)
MMAction2 also supports to mix dataset for training. Currently it supports to repeat dataset.
We use RepeatDataset
as wrapper to repeat the dataset. For example, suppose the original dataset as Dataset_A
,
to repeat it, the config looks like the following
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)