-
Notifications
You must be signed in to change notification settings - Fork 137
/
test.py
333 lines (275 loc) · 13.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import json
from torch.utils.data import DataLoader
from modelsori import *
from utils.datasets import *
from utils.utils import *
import torchvision
def box_iouv5(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def non_max_suppressionv5(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
"""Performs Non-Maximum Suppression (NMS) on inference results
Returns:
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
"""
if prediction.dtype is torch.float16:
prediction = prediction.float() # to FP32
nc = prediction[0].shape[1] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Settings
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
max_det = 300 # maximum number of detections per image
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
t = time.time()
output = [None] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# If none remain process next image
n = x.shape[0] # number of boxes
if not n:
continue
# Sort by confidence
# x = x[x[:, 4].argsort(descending=True)]
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iouv5(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
print(x, i, x.shape, i.shape)
pass
output[xi] = x[i]
if (time.time() - t) > time_limit:
break # time limit exceeded
return output
def test(cfg,
data,
weights=None,
batch_size=16,
img_size=416,
iou_thres=0.5,
conf_thres=0.001,
nms_thres=0.5,
stride=32.0,
save_json=False,
model=None):
# Initialize/load model and set device
if model is None:
device = torch_utils.select_device(opt.device)
verbose = True
# Initialize model
model = Darknet(cfg, img_size).to(device)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
_ = load_darknet_weights(model, weights)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
else:
device = next(model.parameters()).device # get model device
verbose = False
# Configure run
data = parse_data_cfg(data)
nc = int(data['classes']) # number of classes
test_path = data['valid'] # path to test images
names = load_classes(data['names']) # class names
# Dataloader
dataset = LoadImagesAndLabels(test_path, img_size, batch_size,stride=stride)
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=min([os.cpu_count(), batch_size, 16]),
pin_memory=True,
collate_fn=dataset.collate_fn)
seen = 0
model.eval()
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP', 'F1')
p, r, f1, mp, mr, map, mf1 = 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
targets = targets.to(device)
imgs = imgs.to(device)
_, _, height, width = imgs.shape # batch size, channels, height, width
# Plot images with bounding boxes
if batch_i == 0 and not os.path.exists('test_batch0.jpg'):
plot_images(imgs=imgs, targets=targets, paths=paths, fname='test_batch0.jpg')
# Run model
inf_out, train_out = model(imgs) # inference and training outputs
# Compute loss
if hasattr(model, 'hyp'): # if model has loss hyperparameters
loss += compute_loss(train_out, targets, model)[1][:3].cpu() # GIoU, obj, cls
# Run NMS
# output = non_max_suppression(inf_out, conf_thres=conf_thres, nms_thres=nms_thres)
output = non_max_suppressionv5(inf_out,conf_thres=conf_thres, iou_thres=nms_thres, classes=None,agnostic=False)
# Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1
if pred is None:
if nl:
stats.append(([], torch.Tensor(), torch.Tensor(), tcls))
continue
# Append to text file
# with open('test.txt', 'a') as file:
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(imgs[si].shape[1:], box, shapes[si]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for di, d in enumerate(pred):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(d[6])],
'bbox': [floatn(x, 3) for x in box[di]],
'score': floatn(d[4], 5)})
# Clip boxes to image bounds
clip_coords(pred, (height, width))
# Assign all predictions as incorrect
correct = [0] * len(pred)
if nl:
detected = []
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
tbox[:, [0, 2]] *= width
tbox[:, [1, 3]] *= height
# Search for correct predictions
for i, (*pbox, pconf, pcls) in enumerate(pred):
# for i, (*pbox, pconf, pcls_conf, pcls) in enumerate(pred):
# Break if all targets already located in image
if len(detected) == nl:
break
# Continue if predicted class not among image classes
if pcls.item() not in tcls:
continue
# Best iou, index between pred and targets
m = (pcls == tcls_tensor).nonzero(as_tuple=False).view(-1)
iou, bi = bbox_iou(pbox, tbox[m]).max(0)
# If iou > threshold and class is correct mark as correct
if iou > iou_thres and m[bi] not in detected: # and pcls == tcls[bi]:
correct[i] = 1
detected.append(m[bi])
# Append statistics (correct, conf, pcls, tcls)
# stats.append((correct, pred[:, 4].cpu(), pred[:, 6].cpu(), tcls))
stats.append((correct, pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Compute statistics
stats = [np.concatenate(x, 0) for x in list(zip(*stats))] # to numpy
if len(stats):
p, r, ap, f1, ap_class = ap_per_class(*stats)
mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%10.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1))
# Print results per class
if verbose and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))
# Save JSON
if save_json and map and len(jdict):
try:
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataset.img_files]
with open('results.json', 'w') as file:
json.dump(jdict, file)
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO('../coco/annotations/instances_val2014.json') # initialize COCO ground truth api
cocoDt = cocoGt.loadRes('results.json') # initialize COCO pred api
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
map = cocoEval.stats[1] # update mAP to pycocotools mAP
except:
print('WARNING: missing dependency pycocotools from requirements.txt. Can not compute official COCO mAP.')
# Return results
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map, mf1, *(loss / len(dataloader)).tolist()), maps
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--cfg', type=str, default='cfg/yolov5s.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp.weights', help='path to weights file')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
test(opt.cfg,
opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.iou_thres,
opt.conf_thres,
opt.nms_thres,
opt.save_json)