-
Notifications
You must be signed in to change notification settings - Fork 90
/
extract_fc7.lua
131 lines (107 loc) · 3.52 KB
/
extract_fc7.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
require 'torch'
require 'nn'
require 'image'
local utils = require 'utils.misc'
local DataLoader = require 'utils.DataLoader'
require 'loadcaffe'
cmd = torch.CmdLine()
cmd:text('Options')
cmd:option('-batch_size', 10, 'batch size')
cmd:option('-split', 'train', 'train/val')
cmd:option('-debug', 0, 'set debug = 1 for lots of prints')
-- bookkeeping
cmd:option('-seed', 981723, 'Torch manual random number generator seed')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-data_dir', 'data', 'Data directory.')
cmd:option('-feat_layer', 'relu7', 'Layer to extract features from')
cmd:option('-input_image_dir', 'data', 'Image directory')
-- gpu/cpu
cmd:option('-gpuid', -1, '0-indexed id of GPU to use. -1 = CPU')
opt = cmd:parse(arg or {})
torch.manualSeed(opt.seed)
if opt.gpuid >= 0 then
local ok, cunn = pcall(require, 'cunn')
local ok2, cutorch = pcall(require, 'cutorch')
if not ok then print('package cunn not found!') end
if not ok2 then print('package cutorch not found!') end
if ok and ok2 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
cutorch.setDevice(opt.gpuid + 1)
cutorch.manualSeed(opt.seed)
else
print('If cutorch and cunn are installed, your CUDA toolkit may be improperly configured.')
print('Check your CUDA toolkit installation, rebuild cutorch and cunn, and try again.')
print('Falling back to CPU mode')
opt.gpuid = -1
end
end
loader = DataLoader.create(opt.data_dir, opt.batch_size, opt, 'fc7_feat')
cnn = loadcaffe.load(opt.proto_file, opt.model_file)
if opt.gpuid >= 0 then
cnn = cnn:cuda()
end
cnn_fc7 = nn.Sequential()
for i = 1, #cnn.modules do
local layer = cnn:get(i)
local name = layer.name
cnn_fc7:add(layer)
if name == opt.feat_layer then
break
end
end
cnn_fc7:evaluate()
if opt.gpuid >= 0 then
cnn_fc7 = cnn_fc7:cuda()
end
tmp_image_id = {}
for i = 1, #loader.data[opt.split] do
tmp_image_id[loader.data[opt.split][i].image_id] = 1
end
image_id = {}
idx = 1
for i, v in pairs(tmp_image_id) do
image_id[idx] = i
idx = idx + 1
end
fc7 = torch.DoubleTensor(#image_id, 4096)
idx = 1
if opt.gpuid >= 0 then
fc7 = fc7:cuda()
end
repeat
local timer = torch.Timer()
img_batch = torch.zeros(opt.batch_size, 3, 224, 224)
img_id_batch = {}
for i = 1, opt.batch_size do
if not image_id[idx] then
break
end
local fp = path.join(opt.input_image_dir, string.format('%s2014/COCO_%s2014_%.12d.jpg', opt.split, opt.split, image_id[idx]))
if opt.debug == 1 then
print(idx)
print(fp)
end
img_batch[i] = utils.preprocess(image.scale(image.load(fp, 3), 224, 224))
img_id_batch[i] = image_id[idx]
idx = idx + 1
end
if opt.gpuid >= 0 then
img_batch = img_batch:cuda()
end
fc7_batch = cnn_fc7:forward(img_batch:narrow(1, 1, #img_id_batch))
for i = 1, fc7_batch:size(1) do
if opt.debug == 1 then
print(idx - fc7_batch:size(1) + i - 1)
end
fc7[idx - fc7_batch:size(1) + i - 1]:copy(fc7_batch[i])
end
if opt.gpuid >= 0 then
cutorch.synchronize()
end
local time = timer:time().real
print(idx-1 .. '/' .. #image_id .. " " .. time)
collectgarbage()
until idx >= #image_id
torch.save(path.join(opt.data_dir, opt.split .. '_fc7.t7'), fc7)
torch.save(path.join(opt.data_dir, opt.split .. '_fc7_image_id.t7'), image_id)