-
Notifications
You must be signed in to change notification settings - Fork 57
/
calculator.c
1022 lines (966 loc) · 35.5 KB
/
calculator.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* All the initialization is done here before actually calculating internal fields,
* includes calculation of couple constants
*
* Copyright (C) ADDA contributors
* This file is part of ADDA.
*
* ADDA is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
*
* ADDA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ADDA. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "const.h" // keep this first
// project headers
#include "cmplx.h"
#include "comm.h"
#include "crosssec.h"
#include "debug.h"
#include "fft.h"
#include "interaction.h"
#include "io.h"
#include "memory.h"
#include "oclcore.h"
#include "Romberg.h"
#include "timing.h"
#include "vars.h"
// system headers
#include <math.h>
#include <stdlib.h>
#include <string.h>
// SEMI-GLOBAL VARIABLES
// defined and initialized in crosssec.c
extern const Parms_1D parms[2],parms_alpha;
extern const angle_set beta_int,gamma_int,theta_int,phi_int;
// defined and initialized in param.c
extern const bool avg_inc_pol;
extern const double polNlocRp;
extern const char *alldir_parms,*scat_grid_parms;
// defined and initialized in timing.c
extern TIME_TYPE Timing_Init,Timing_Init_Int;
#ifdef OPENCL
extern TIME_TYPE Timing_OCL_Init;
#endif
extern size_t TotalEval;
// used in CalculateE.c
double * restrict muel_phi; // used to store values of Mueller matrix for different phi (to integrate)
double * restrict muel_phi_buf; // additional for integrating with different multipliers
// scattered E (for scattering in the default scattering plane) for two incident polarizations
doublecomplex * restrict EplaneX, * restrict EplaneY;
doublecomplex * restrict EyzplX, * restrict EyzplY; // same for scattering in yz-plane
double dtheta_deg,dtheta_rad; // delta theta in degrees and radians
doublecomplex * restrict ampl_alphaX,* restrict ampl_alphaY; // amplitude matrix for different values of alpha
double * restrict muel_alpha; // mueller matrix for different values of alpha
// used in crosssec.c
doublecomplex * restrict E_ad; // complex field E, calculated for alldir
double * restrict E2_alldir; // square of E (scaled with msub, so ~ Poynting vector or dC/dOmega), calculated for alldir
doublecomplex cc[MAX_NMAT][3]; // couple constants
#ifndef SPARSE
doublecomplex * restrict expsX,* restrict expsY,* restrict expsZ; // arrays of exponents along 3 axes (for calc_field)
#endif
// used in iterative.c
doublecomplex *rvec; // current residual
doublecomplex * restrict Avecbuffer; // used to hold the result of matrix-vector products
// auxiliary vectors, used in some iterative solvers (with more meaningful names)
doublecomplex * restrict vec1,* restrict vec2,* restrict vec3,* restrict vec4;
// used in matvec.c
#ifdef SPARSE
doublecomplex * restrict arg_full; // vector to hold argvec for all dipoles
#endif
// LOCAL VARIABLES
static size_t block_theta; // size of one block of mueller matrix - 16*nTheta
static int finish_avg; // whether to stop orientation averaging; defined as int to simplify MPI casting
static double * restrict out; // used to collect both mueller matrix and integral scattering quantities when orient_avg
/* the following definitions and data are from Gutkowicz-Krusin D, Draine BT. "Propagation of electromagnetic waves on a
* rectangular lattice of polarizable points" (2004). Available from: http://arxiv.org/abs/astro-ph/0403082.
*/
struct draine_coefficients {
const double ratios[3];
const double R0[3]; // polarizability correction by Eq.(45)
const double R1; // polarizability correction by Eq.(47)
const double R2[3]; // polarizability correction by Eq.(48)
const double R3[6]; // polarizability correction by Eq.(49)
};
static const struct draine_coefficients draine_precalc_data_array[] = {
// the array is finalized with zeros to facilitate search
{
{1, 1, 1},
{0, 0, 0}, 0,
{0, 0, 0},
{0, 0, 0, 0, 0, 0}},
{
{1, 1, 1.5},
{0.20426, 0.20426, -0.40851}, -0.53869,
{0.52918, 0.52918, -1.59705},
{0.37743, 0.37743, -1.62922, 0.13566, 0.01609, 0.01609}},
{
{1, 1.5, 1},
{0.20426, -0.40851, 0.20426}, -0.53869,
{0.52918, -1.59705, 0.52918},
{0.37743, -1.62922, 0.37743, 0.01609, 0.13566, 0.01609}},
{
{1.5, 1, 1},
{-0.40851, 0.20426, 0.20426}, -0.53869,
{-1.59705, 0.52918, 0.52918},
{-1.62922, 0.37743, 0.37743, 0.01609, 0.01609, 0.13566}},
{
{1, 1.5, 1.5},
{0.52383, -0.26192, -0.26192}, -0.50962,
{1.13457, -0.82209, -0.82209},
{0.80161, -0.80815, -0.80815, 0.16648, 0.16648, -0.18041}},
{
{1.5, 1, 1.5},
{-0.26192, 0.52383, -0.26192}, -0.50962,
{-0.82209, 1.13457, -0.82209},
{-0.80815, 0.80161, -0.80815, 0.16648, -0.18041, 0.16648}},
{
{1.5, 1.5, 1},
{-0.26192, -0.26192, 0.52383}, -0.50962,
{-0.82209, -0.82209, 1.13457},
{-0.80815, -0.80815, 0.80161, -0.18041, 0.16648, 0.16648}},
{
{1, 1, 2},
{0.38545, 0.38545, -0.77090}, -1.76582,
{0.88788, 0.88788, -3.54158},
{0.55693, 0.55693, -3.72878, 0.23735, 0.09360, 0.09360}},
{
{1, 2, 1},
{0.38545, -0.77090, 0.38545}, -1.76582,
{0.88788, -3.54158, 0.88788},
{0.55693, -3.72878, 0.55693, 0.09360, 0.23735, 0.09360}},
{
{2, 1, 1},
{-0.77090, 0.38545, 0.38545}, -1.76582,
{-3.54158, 0.88788, 0.88788},
{-3.72878, 0.55693, 0.55693, 0.09360, 0.09360, 0.23735}},
{
{1, 1.5, 2},
{0.81199, -0.21028, -0.60172}, -1.21448,
{1.55359, -0.50100, -2.26706},
{1.02166, -0.55501, -2.30887, 0.27206, 0.25987, -0.21806}},
{
{1, 2, 1.5},
{0.81199, -0.60172, -0.21028}, -1.21448,
{1.55359, -2.26706, -0.50100},
{1.02166, -2.30887, -0.55501, 0.25987, 0.27206, -0.21806}},
{
{1.5, 1, 2},
{-0.21028, 0.81199, -0.60172}, -1.21448,
{-0.50100, 1.55359, -2.26706},
{-0.55501, 1.02166, -2.30887, 0.27206, -0.21806, 0.25987}},
{
{1.5, 2, 1},
{-0.21028, -0.60172, 0.81199}, -1.21448,
{-0.50100, -2.26706, 1.55359},
{-0.55501, -2.30887, 1.02166, -0.21806, 0.27206, 0.25987}},
{
{2, 1, 1.5},
{-0.60172, 0.81199, -0.21028}, -1.21448,
{-2.26706, 1.55359, -0.50100},
{-2.30887, 1.02166, -0.55501, 0.25987, -0.21806, 0.27206}},
{
{2, 1.5, 1},
{-0.60172, -0.21028, 0.81199}, -1.21448,
{-2.26706, -0.50100, 1.55359},
{-2.30887, -0.55501, 1.02166, -0.21806, 0.25987, 0.27206}},
{
{1, 2, 2},
{1.19693, -0.59846, -0.59846}, -1.59967,
{2.01512, -1.80739, -1.80739},
{1.26456, -1.78732, -1.78732, 0.37528, 0.37528, -0.39535}},
{
{2, 1, 2},
{-0.59846, 1.19693, -0.59846}, -1.59967,
{-1.80739, 2.01512, -1.80739},
{-1.78732, 1.26456, -1.78732, 0.37528, -0.39535, 0.37528}},
{
{2, 2, 1},
{-0.59846, -0.59846, 1.19693}, -1.59967,
{-1.80739, -1.80739, 2.01512},
{-1.78732, -1.78732, 1.26456, -0.39535, 0.37528, 0.37528}},
{
{1, 1, 3},
{0.74498, 0.74498, -1.48995}, -5.47612,
{1.44677, 1.44677, -8.36967},
{0.81662, 0.81662, -8.83412, 0.39793, 0.23223, 0.23223}},
{
{1, 3, 1},
{0.74498, -1.48995, 0.74498}, -5.47612,
{1.44677, -8.36967, 1.44677},
{0.81662, -8.83412, 0.81662, 0.23223, 0.39793, 0.23223}},
{
{3, 1, 1},
{-1.48995, 0.74498, 0.74498}, -5.47612,
{-8.36967, 1.44677, 1.44677},
{-8.83412, 0.81662, 0.81662, 0.23223, 0.23223, 0.39793}},
{
{1, 1.5, 3},
{1.38481, -0.14304, -1.24176}, -3.71651,
{2.20875, -0.12162, -5.80365},
{1.34832, -0.40088, -6.06792, 0.43771, 0.42272, -0.15845}},
{
{1, 3, 1.5},
{1.38481, -1.24176, -0.14304}, -3.71651,
{2.20875, -5.80365, -0.12162},
{1.34832, -6.06792, -0.40088, 0.42272, 0.43771, -0.15845}},
{
{1.5, 1, 3},
{-0.14304, 1.38481, -1.24176}, -3.71651,
{-0.12162, 2.20875, -5.80365},
{-0.40088, 1.34832, -6.06792, 0.43771, -0.15845, 0.42272}},
{
{1.5, 3, 1},
{-0.14304, -1.24176, 1.38481}, -3.71651,
{-0.12162, -5.80365, 2.20875},
{-0.40088, -6.06792, 1.34832, -0.15845, 0.43771, 0.42272}},
{
{3, 1, 1.5},
{-1.24176, 1.38481, -0.14304}, -3.71651,
{-5.80365, 2.20875, -0.12162},
{-6.06792, 1.34832, -0.40088, 0.42272, -0.15845, 0.43771}},
{
{3, 1.5, 1},
{-1.24176, -0.14304, 1.38481}, -3.71651,
{-5.80365, -0.12162, 2.20875},
{-6.06792, -0.40088, 1.34832, -0.15845, 0.42272, 0.43771}},
{
{1, 2, 3},
{1.96224, -0.69714, -1.26510}, -3.48931,
{2.73708, -1.49246, -4.73393},
{1.62638, -1.56624, -4.80661, 0.55590, 0.55480, -0.48211}},
{
{1, 3, 2},
{1.96224, -1.26510, -0.69714}, -3.48931,
{2.73708, -4.73393, -1.49246},
{1.62638, -4.80661, -1.56624, 0.55480, 0.55590, -0.48211}},
{
{2, 1, 3},
{-0.69714, 1.96224, -1.26510}, -3.48931,
{-1.49246, 2.73708, -4.73393},
{-1.56624, 1.62638, -4.80661, 0.55590, -0.48211, 0.55480}},
{
{2, 3, 1},
{-0.69714, -1.26510, 1.96224}, -3.48931,
{-1.49246, -4.73393, 2.73708},
{-1.56624, -4.80661, 1.62638, -0.48211, 0.55590, 0.55480}},
{
{3, 1, 2},
{-1.26510, 1.96224, -0.69714}, -3.48931,
{-4.73393, 2.73708, -1.49246},
{-4.80661, 1.62638, -1.56624, 0.55480, -0.48211, 0.55590}},
{
{3, 2, 1},
{-1.26510, -0.69714, 1.96224}, -3.48931,
{-4.73393, -1.49246, 2.73708},
{-4.80661, -1.56624, 1.62638, -0.48211, 0.55480, 0.55590}},
{
{1, 3, 3},
{3.11030, -1.55515, -1.55515}, -4.62875,
{3.56356, -4.09616, -4.09616},
{2.04073, -3.94766, -3.94766, 0.76142, 0.76142, -0.90991}},
{
{3, 1, 3},
{-1.55515, 3.11030, -1.55515}, -4.62875,
{-4.09616, 3.56356, -4.09616},
{-3.94766, 2.04073, -3.94766, 0.76142, -0.90991, 0.76142}},
{
{3, 3, 1},
{-1.55515, -1.55515, 3.11030}, -4.62875,
{-4.09616, -4.09616, 3.56356},
{-3.94766, -3.94766, 2.04073, -0.90991, 0.76142, 0.76142}},
{
{0, 0, 0},
{0, 0, 0}, 0,
{0, 0, 0},
{0, 0, 0, 0, 0, 0}},
};
// EXTERNAL FUNCTIONS
// CalculateE.c
int CalculateE(enum incpol which,enum Eftype type);
bool TestExtendThetaRange(void);
void MuellerMatrix(void);
void SaveMuellerAndCS(double * restrict in);
//======================================================================================================================
static inline doublecomplex polCM(const doublecomplex m)
// computes CM polarizability from given refractive index m - (3V/4pi)*(m^2-1)/(m^2+2)
{
doublecomplex m2=m*m;
return (3/FOUR_PI)*dipvol*(m2-1)/(m2+2);
}
//======================================================================================================================
static inline doublecomplex polM(const doublecomplex M,const doublecomplex m)
// computes polarizability, given the M term and refractive index m
{
doublecomplex cm=polCM(m);
return cm/(1-(cm/dipvol)*M);
}
//======================================================================================================================
static inline doublecomplex polMplusRR(const doublecomplex M,const doublecomplex m)
// computes polarizability, given the M term (without RR part - ) and refractive index m
{
return polM(M+I*2*kd*kd*kd/3,m);
}
//======================================================================================================================
static inline doublecomplex pol3coef(const double b1,const double b2,const double b3,const double S,
const doublecomplex m)
/* computes polarizability, using the common formula, based on 3 coefs, S-term and refractive index m
* M0=(b1+(b2+b3*S)*m^2)*kd^2. Important feature is that M0 depends on m.
*/
{
return polMplusRR((b1+(b2+b3*S)*m*m)*kd*kd,m);
}
//======================================================================================================================
static inline double ellTheta(const double a)
/* computes the following expression: a^3(theta_3(0,exp(-pi*a^2))^3-1), where
* theta_3 is elliptic theta function of 3rd kind, in particular
* theta_3(0,exp(-pi*a^2)) = 1 + Sum[exp(-pi*a^2*k,{k,1,inf}]
* it obeys the following relation theta_3(0,exp(-pi*a^2)) = (1/a)*theta_3(0,exp(-pi/a^2)),
* see e.g. J.D. Fenton and R.S. Gardiner-Garden, "Rapidly-convergent methods for evaluating elliptic integrals and
* theta and elliptic functions," J. Austral. Math. Soc. B 24, 47-58 (1982).
* or http://en.wikipedia.org/wiki/Theta_function#Jacobi_identities
* so the sum need to be taken only for a>=1, then three terms are sufficient to obtain 10^-22 accuracy
*/
{
double q,q2,q3,t,a2,a3,res;
a2=a*a;
a3=a*a2;
if (a>=1) {
q=exp(-PI*a2);
q2=q*q;
q3=q*q2;
t=2*q*(1+q3*(1+q2*q3)); // t = theta_3(0,exp(-pi*a^2)) - 1 = 2*(q + q^4 + q^9)
res=a3*t*(3+t*(3+t)); // a^3*[(t+1)^3-1]
}
else { // a<1, employ transformation a->1/a
q=exp(-PI/a2);
q2=q*q;
q3=q*q2;
t=1+2*q*(1+q3*(1+q2*q3)); // t = theta_3(0,exp(-pi/a^2)) = 1+ 2*(q + q^4 + q^9)
res=t*t*t - a3; // a^3*[(t/a)^3-1]
}
return res;
}
//======================================================================================================================
static inline double MassaIntegral(const double a,const double b,const double c)
// http://iopscience.iop.org/1367-2630/15/6/063013/media/NJP465759suppdata.pdf , p. 11, Eq. (54)
{
double currentSqrt = sqrt(a*a + b*b + c*c);
double integral = 0;
integral -= 4*c*c*atan(a*b/currentSqrt/c);
integral -= 4*b*b*atan(a*c/currentSqrt/b);
integral += 2*a*b*log(c + currentSqrt);
integral += 2*a*c*log(b + currentSqrt);
integral += 4*b*c*log(a + currentSqrt);
integral -= 2*a*b*log(currentSqrt - c);
integral -= 2*a*c*log(currentSqrt - b);
integral -= 4*c*b*log(currentSqrt - a);
return integral*2;
}
//======================================================================================================================
static void CoupleConstant(doublecomplex *mrel,const enum incpol which,doublecomplex res[static 3])
/* Input is relative refractive index (mrel) - either one or three components (for anisotropic). incpol is relevant only
* for LDR without avgpol. res is three values (diagonal of polarizability tensor).
*
* !!! TODO: if this function will be executed many times, it can be optimized by moving time-consuming calculation of
* certain coefficients to one-call initialization function.
*
* TO ADD NEW POLARIZABILITY FORMULATION
* This function implements calculations of polarizability. It should be updated to support new formulations.
* The corresponding case should either be added to 'asym' list (then three components of polarizability are
* calculated from one m) or to another one, then a scalar function is used. See comments in the code for more details.
*/
{
if (rectDip) {
int i;
double a,b,c;
double omega;
double beta;
int draine_precalc_data_index=UNDEF;
#define IS_DOUBLE_EQUAL(x,y) ( fabs((x) - (y)) < ROUND_ERR )
if (PolRelation==POL_CLDR || PolRelation==POL_CM) {
double temp_rectScaleX=rectScaleX,
temp_rectScaleY=rectScaleY,
temp_rectScaleZ=rectScaleZ;
double tmp=MIN(temp_rectScaleX,rectScaleY);
tmp=MIN(tmp,rectScaleZ);
if (tmp>0) {
temp_rectScaleX/=tmp;
temp_rectScaleY/=tmp;
temp_rectScaleZ/=tmp;
}
i=-1;
while (draine_precalc_data_array[++i].ratios[0] > 0
|| draine_precalc_data_array[i].ratios[1] > 0
|| draine_precalc_data_array[i].ratios[2] > 0) {
if (IS_DOUBLE_EQUAL(temp_rectScaleX,draine_precalc_data_array[i].ratios[0]) &&
IS_DOUBLE_EQUAL(temp_rectScaleY,draine_precalc_data_array[i].ratios[1]) &&
IS_DOUBLE_EQUAL(temp_rectScaleZ,draine_precalc_data_array[i].ratios[2])) {
draine_precalc_data_index=i;
break;
}
}
if (draine_precalc_data_index==UNDEF) LogError(ONE_POS,"Non-standard proportions of rectangular dipole "
"(%g:%g:%g) are not compatible with CM, LDR, and CLDR polarizabilities. See the manual for details.",
rectScaleX,rectScaleY,rectScaleZ);
#undef IS_DOUBLE_EQUAL
}
double c1=-5.9424219;
double c2=0.5178819;
double c3=4.0069747;
double nu=WaveNum/TWO_PI*pow(dipvol,ONE_THIRD);
doublecomplex correction;
doublecomplex L,K;
double draineSum;
int l;
for (i=0; i < 3; i++) {
if (PolRelation==POL_IGT_SO) {
if (i==0) {
a=dsX*0.5;
b=dsY*0.5;
c=dsZ*0.5;
} else if (i==1) {
a=dsY*0.5;
b=dsX*0.5;
c=dsZ*0.5;
} else {
a=dsZ*0.5;
b=dsY*0.5;
c=dsX*0.5;
}
/* see Enrico Massa 'Discrete-dipole approximation on a rectangular cuboidal point lattice:
* considering dynamic depolarization'. Eq. number noted for some lines of code
*/
omega=4*asin(b*c/sqrt((a*a+b*b)*(a*a+c*c))); // Eq.(10)
beta=MassaIntegral(a,b,c); // Eq.(11) beta is the volume integral
res[i]=(-2*omega+WaveNum*WaveNum*beta/2)+I*(16.0/3*WaveNum*WaveNum*WaveNum*a*b*c); // Eq.(9)
res[i]=FOUR_PI/(mrel[0]*mrel[0]-1)-res[i]; // Eq.(9)
res[i]=8*a*b*c/res[i]; // Eq.(9)
}
if (PolRelation==POL_CLDR || PolRelation==POL_CM) {
#define R3_INDEX(i,j)(i==j?i:(i+j+2))
//see B.T. Draine 'Propagation of Electromagnetic Waves on a Rectangular Lattice of Polarizable Points'
// Eq number noted for some lines of code
res[i]=3*(mrel[0]*mrel[0]-1)/(mrel[0]*mrel[0]+2); // CM
// Eq.(55), corrected value CM for rectangular dipole
res[i]=res[i]/(1+res[i]*draine_precalc_data_array[draine_precalc_data_index].R0[i]);
res[i]*=dipvol/FOUR_PI;
if (PolRelation==POL_CLDR) {
draineSum=0;
for (l=0; l < 3; l++)
draineSum+=prop[l]*prop[l]*draine_precalc_data_array[draine_precalc_data_index].R3[R3_INDEX(i,l)];
// L is obtained in Eq.(62)
L=c1+mrel[0]*mrel[0]*c2*(1-3*prop[i]*prop[i])-mrel[0]*mrel[0]*c3*prop[i]*prop[i]-FOUR_PI*PI*I*nu/3-
draine_precalc_data_array[draine_precalc_data_index].R1-
(mrel[0]*mrel[0]-1)*draine_precalc_data_array[draine_precalc_data_index].R2[i]-
8*mrel[0]*mrel[0]*prop[i]*prop[i]*
draine_precalc_data_array[draine_precalc_data_index].R3[R3_INDEX(i,i)]+4*mrel[0]*mrel[0]*draineSum;
// K is obtained in Eq.(63)
K=c3+draine_precalc_data_array[draine_precalc_data_index].R1-
4*draine_precalc_data_array[draine_precalc_data_index].R2[i]+
8*draine_precalc_data_array[draine_precalc_data_index].R3[R3_INDEX(i,i)];
correction=-FOUR_PI*nu*nu*(L+mrel[0]*mrel[0]*prop[i]*prop[i]*(K-c3)); // Eq.(65)
res[i]=res[i]/(1-(res[i]/dipvol)*correction);
}
#undef R3_INDEX
}
}
if (!orient_avg && IFROOT) PrintBoth(logfile, "CoupleConstant: "CFORM3V"\n", REIM3V(res));
}
else {
double ka,kd2,S;
int i;
bool asym; // whether polarizability is asymmetric (for isotropic m)
const double *incPol;
asym = (PolRelation==POL_CLDR); // whether non-scalar tensor is produced for scalar m
// !!! this should never happen
if (asym && anisotropy) LogError(ONE_POS,"Incompatibility error in CoupleConstant");
kd2=kd*kd;
if (asym) for (i=0;i<3;i++) { // loop over components of polarizability (for scalar input m)
switch (PolRelation) {
case POL_CLDR: res[i]=pol3coef(LDR_B1,LDR_B2,LDR_B3,prop[i]*prop[i],mrel[0]); break;
default: LogError(ONE_POS,"Incompatibility error in CoupleConstant");
// no break
}
}
else for (i=0;i<Ncomp;i++) { // loop over components of input m
switch (PolRelation) {
case POL_CM: res[i]=polCM(mrel[i]); break;
case POL_DGF: res[i]=polMplusRR(DGF_B1*kd2,mrel[i]); break;
case POL_FCD: // M0={(4/3)kd^2+(2/3pi)log[(pi-kd)/(pi+kd)]kd^3}
res[i]=polMplusRR(2*ONE_THIRD*kd2*(2+kd*INV_PI*log((PI-kd)/(PI+kd))),mrel[i]);
break;
case POL_IGT_SO: res[i]=polMplusRR(SO_B1*kd2,mrel[i]); break;
case POL_LAK: // M=(8pi/3)[(1-ika)exp(ika)-1], a - radius of volume-equivalent (to cubical dipole) sphere
ka=LAK_C*kd;
res[i]=polM(2*FOUR_PI_OVER_THREE*((1-I*ka)*imExp(ka)-1),mrel[i]);
break;
case POL_LDR:
if (avg_inc_pol) S=0.5*(1-DotProdSquare(prop,prop));
else {
if (which==INCPOL_Y) incPol=incPolY;
else incPol=incPolX; // which==INCPOL_X
S = DotProdSquare(prop,incPol);
}
res[i]=pol3coef(LDR_B1,LDR_B2,LDR_B3,S,mrel[i]);
break;
case POL_NLOC: // !!! additionally dynamic part should be added (if needed)
/* Here the polarizability is derived from the condition that V_d*sum(G_h(ri))=-4pi/3, where sum is
* taken over the whole lattice. Then M=4pi/3+V_d*Gh(0)=V_d*sum(G_h(ri),i!=0)
* Moreover, the regular part (in limit Rp->0) of Green's tensor automatically sums to zero, so only
* the irregular part need to be considered -h(r)*4pi/3, where h(r) is a normalized Gaussian
*/
if (polNlocRp==0) res[i]=polCM(mrel[i]);
else res[i]=polM(FOUR_PI_OVER_THREE*ellTheta(SQRT1_2PI*gridspace/polNlocRp),mrel[i]);
break;
case POL_NLOC_AV:
if (polNlocRp==0) res[i]=polCM(mrel[i]); // polMplusRR(DGF_B1*kd2,mrel[i]); // just DGF
else {
double x=gridspace/(2*SQRT2*polNlocRp);
double g0,t;
// g0 = 1 - erf(x)^3, but careful evaluation is performed to keep precision
if (x<1) {
t=erf(x);
g0=1-t*t*t;
}
else {
t=erfc(x);
g0=t*(3-3*t+t*t);
}
// !!! dynamic part should be added here
res[i]=polM(FOUR_PI_OVER_THREE*g0,mrel[i]);
}
break;
case POL_RRC: res[i]=polMplusRR(0,mrel[i]); break;
default: LogError(ONE_POS,"Incompatibility error in CoupleConstant");
// no break
}
}
if (asym || anisotropy) {
if (!orient_avg && IFROOT) PrintBoth(logfile, "CoupleConstant: "CFORM3V"\n",REIM3V(res));
}
else {
res[2]=res[1]=res[0];
if (!orient_avg && IFROOT) PrintBoth(logfile,"CoupleConstant: "CFORM"\n",REIM(res[0]));
}
}
}
//======================================================================================================================
static void InitCC(const enum incpol which)
// calculate cc, cc_sqrt, and chi_inv
{
int i,j;
doublecomplex m;
for(i=0;i<Nmat;i++) {
CoupleConstant(ref_index+Ncomp*i,which,cc[i]);
for(j=0;j<3;j++) cc_sqrt[i][j]=csqrt(cc[i][j]);
// chi_inv=1/(V*chi)=4*PI/(V(m^2-1)); for anisotropic - by components
for (j=0;j<Ncomp;j++) {
m=ref_index[Ncomp*i+j];
chi_inv[i][j]=FOUR_PI/(dipvol*(m*m-1));
}
// copy first component of chi_inv[i] into other two, if they are not calculated explicitly
if (!anisotropy) chi_inv[i][2]=chi_inv[i][1]=chi_inv[i][0];
}
#ifdef OPENCL
/* this is done here, since InitCC can be run between different runs of the iterative solver; write is blocking to
* ensure completion before function end
*/
CL_CH_ERR(clEnqueueWriteBuffer(command_queue,bufcc_sqrt,CL_TRUE,0,sizeof(cc_sqrt),cc_sqrt,0,NULL,NULL));
#endif
}
//======================================================================================================================
static void calculate_one_orientation(double * restrict res)
// performs calculation for one orientation; may do orientation averaging and put the result in res
{
TIME_TYPE tstart;
if (orient_avg) {
alph_deg=0;
InitRotation();
if (IFROOT) PrintBoth(logfile,"\nORIENTATION STEP beta="GFORMDEF" gamma="GFORMDEF"\n",bet_deg,gam_deg);
}
// calculate scattered field for y - polarized incident light
if (IFROOT) {
PRINTFB("\nhere we go, calc Y\n\n");
if (!orient_avg) fprintf(logfile,"\nhere we go, calc Y\n\n");
}
InitCC(INCPOL_Y);
// symR implies that prop is along z (in particle RF). Then it is fine for both definitions of scattering angles
if (symR && !scat_grid) {
if (CalculateE(INCPOL_Y,CE_PARPER)==CHP_EXIT) return;
}
else { // no rotational symmetry
/* TODO: in case of scat_grid we run twice to get the full electric field with incoming light polarized in X and
* Y direction. In case of rotational symmetry this is not needed but requires lots more programming so we leave
* this optimization to a later time.
*/
if (CalculateE(INCPOL_Y,CE_NORMAL)==CHP_EXIT) return;
if (IFROOT) {
PRINTFB("\nhere we go, calc X\n\n");
if (!orient_avg) fprintf(logfile,"\nhere we go, calc X\n\n");
}
if (PolRelation==POL_LDR && !avg_inc_pol) InitCC(INCPOL_X);
/* TO ADD NEW POLARIZABILITY FORMULATION
* If new formulation depends on the incident polarization (unlikely) update the test above.
*/
if (CalculateE(INCPOL_X,CE_NORMAL)==CHP_EXIT) return;
}
D("CalculateE finished");
MuellerMatrix();
D("MuellerMatrix finished");
if (IFROOT && orient_avg) {
tstart=GET_TIME();
if (store_mueller) PRINTFB("\nError of alpha integration (Mueller) is "GFORMDEF"\n",
Romberg1D(parms_alpha,block_theta,muel_alpha,res+2));
memcpy(res,muel_alpha-2,2*sizeof(double));
D("Integration over alpha completed on root");
Timing_Integration += GET_TIME() - tstart;
}
TotalEval++;
}
//======================================================================================================================
static double orient_integrand(int beta_i,int gamma_i, double * restrict res)
// function that provides interface with Romberg integration
{
BcastOrient(&beta_i,&gamma_i,&finish_avg);
if (finish_avg) return 0;
bet_deg=beta_int.val[beta_i];
gam_deg=gamma_int.val[gamma_i];
calculate_one_orientation(res);
return 0;
}
//======================================================================================================================
static void AllocateEverything(void)
// allocates a lot of arrays and performs memory analysis
{
double tmp;
size_t temp_int;
double memmax;
// redundant initialization to remove warnings
temp_int=0;
/* It may be nice to initialize all pointers to NULL here, so that any pointer, which is not initialized below, will
* surely stay NULL (independent of a particular compiler). But even without this forgetting to allocate a necessary
* vector, will surely cause segmentation fault afterwards. So we do not implement these extra tests for now.
*/
// allocate all the memory
tmp=sizeof(doublecomplex)*(double)local_nRows;
if (!prognosis) { // main 5 vectors, some of them are used in the iterative solver
MALLOC_VECTOR(xvec,complex,local_nRows,ALL);
MALLOC_VECTOR(rvec,complex,local_nRows,ALL);
MALLOC_VECTOR(pvec,complex,local_nRows,ALL);
MALLOC_VECTOR(Einc,complex,local_nRows,ALL);
MALLOC_VECTOR(Avecbuffer,complex,local_nRows,ALL);
}
memory+=5*tmp;
#ifdef SPARSE
if (!prognosis) { // overflow of 3*nvoid_Ndip is tested in MakeParticle()
MALLOC_VECTOR(arg_full,complex,3*nvoid_Ndip,ALL);
}
memory+=3*nvoid_Ndip*sizeof(doublecomplex);
#endif // SPARSE
/* additional vectors for iterative methods. Potentially, this procedure can be fully automated for any new
* iterative solver, based on the information contained in structure array 'params' in file iterative.c. However,
* this requires different order of function calls to extract this information beforehand. So currently this part
* should be edited manually when needed.
*/
switch (IterMethod) {
case IT_BCGS2:
if (!prognosis) {
MALLOC_VECTOR(vec1,complex,local_nRows,ALL);
MALLOC_VECTOR(vec2,complex,local_nRows,ALL);
MALLOC_VECTOR(vec3,complex,local_nRows,ALL);
MALLOC_VECTOR(vec4,complex,local_nRows,ALL);
}
memory+=4*tmp;
break;
case IT_CGNR:
case IT_BICG_CS:
break;
case IT_BICGSTAB:
case IT_QMR_CS:
if (!prognosis) {
MALLOC_VECTOR(vec1,complex,local_nRows,ALL);
MALLOC_VECTOR(vec2,complex,local_nRows,ALL);
MALLOC_VECTOR(vec3,complex,local_nRows,ALL);
}
memory+=3*tmp;
break;
case IT_CSYM:
case IT_QMR_CS_2:
if (!prognosis) {
MALLOC_VECTOR(vec1,complex,local_nRows,ALL);
MALLOC_VECTOR(vec2,complex,local_nRows,ALL);
}
memory+=2*tmp;
break;
}
/* TO ADD NEW ITERATIVE SOLVER
* Add here a case corresponding to the new iterative solver. If the new iterative solver requires any extra vectors
* (additionally to the default ones), i.e. number vec_N in corresponding element of structure array params in
* iterative.c is non-zero, then allocate memory for these vectors here. Variable memory should be incremented to
* reflect the total allocated memory.
*/
#ifndef SPARSE
MALLOC_VECTOR(expsX,complex,boxX,ALL);
MALLOC_VECTOR(expsY,complex,boxY,ALL);
MALLOC_VECTOR(expsZ,complex,local_Nz_unif,ALL);
#endif // !SPARSE
if (yzplane) {
tmp=2*(double)nTheta;
if (!prognosis) {
CheckOverflow(2*tmp,ONE_POS_FUNC);
temp_int=tmp;
MALLOC_VECTOR(EyzplX,complex,temp_int,ALL);
MALLOC_VECTOR(EyzplY,complex,temp_int,ALL);
}
memory+=2*tmp*sizeof(doublecomplex);
}
if (scat_plane) {
tmp=2*(double)nTheta;
if (!prognosis) {
CheckOverflow(2*tmp,ONE_POS_FUNC);
temp_int=tmp;
MALLOC_VECTOR(EplaneX,complex,temp_int,ALL);
MALLOC_VECTOR(EplaneY,complex,temp_int,ALL);
}
memory+=2*tmp*sizeof(doublecomplex);
}
if (all_dir) {
ReadAlldirParms(alldir_parms);
/* calculate size of vectors; 4 - because first it is used to store per and par components of the field, and
* only afterwards - squares.
*/
tmp=((double)theta_int.N)*phi_int.N;
if (!prognosis) {
CheckOverflow(2*tmp,ONE_POS_FUNC);
temp_int=tmp;
MALLOC_VECTOR(E_ad,complex,2*temp_int,ALL);
MALLOC_VECTOR(E2_alldir,double,temp_int,ALL);
}
memory+=tmp*(sizeof(double)+2*sizeof(doublecomplex));
}
if (scat_grid) {
ReadScatGridParms(scat_grid_parms);
// calculate size of vectors - holds all per-par combinations
tmp=2*(double)angles.N;
if (!prognosis) {
CheckOverflow(2*tmp,ONE_POS_FUNC);
temp_int=tmp;
MALLOC_VECTOR(EgridX,complex,temp_int,ALL);
MALLOC_VECTOR(EgridY,complex,temp_int,ALL);
}
memory+=2*tmp*sizeof(doublecomplex);
if (phi_integr && IFROOT) {
tmp=16*(double)angles.phi.N;
if (!prognosis) {
CheckOverflow(tmp,ONE_POS_FUNC);
temp_int=tmp;
MALLOC_VECTOR(muel_phi,double,temp_int,ONE);
MALLOC_VECTOR(muel_phi_buf,double,temp_int,ONE);
}
memory+=2*tmp*sizeof(double);
}
}
if (orient_avg) {
tmp=2*((double)nTheta)*alpha_int.N;
if (!prognosis) {
// this covers these 2 and next 2 malloc calls
CheckOverflow(8*tmp+2,ONE_POS_FUNC);
if (store_mueller) {
temp_int=tmp;
MALLOC_VECTOR(ampl_alphaX,complex,temp_int,ONE);
MALLOC_VECTOR(ampl_alphaY,complex,temp_int,ONE);
}
}
memory += 2*tmp*sizeof(doublecomplex);
if (IFROOT) {
if (!prognosis) {
MALLOC_VECTOR(muel_alpha,double,block_theta*alpha_int.N+2,ONE);
muel_alpha+=2;
MALLOC_VECTOR(out,double,block_theta+2,ONE);
}
memory += (8*tmp*(1+1.0/alpha_int.N)+4)*sizeof(double);
}
}
/* estimate of the memory (only the fastest scaling part):
* MatVec - (288+384nprocs/boxX [+192/nprocs])*Ndip
* more exactly: gridX*gridY*gridZ*(36+48nprocs/boxX [+24/nprocs]) value in [] is only for parallel mode.
* For surf additionally: gridX*gridY*gridZ*(48+48nprocs/boxX)
* + for Sommerfeld table: 128*boxZ*(boxX*boxY-(MIN(boxX,boxY))^2/2)
* For OpenCL mode all MatVec part is allocated on GPU instead of main (CPU) memory (+ a few additional vectors).
* However, OpenCL may additionally use up to 96*min(32,gridX)*gridY*gridZ if available.
* others - nvoid_Ndip*{271(CGNR,BiCG), 367(CSYM,QMR2), 415(BiCGStab,QMR), or 463(BCGS2)}
* + additional 8*nvoid_Ndip for OpenCL mode and CGNR or Bi-CGSTAB
* PARALLEL: above is total; division over processors of MatVec is uniform, others - according to local_nvoid_Ndip
*
* Sparse mode - each processor needs (265--457, depending on iterative solver)*local_nvoid_Ndip + 60*nvoid_Ndip
* and division is uniform, i.e. local_nvoid_Ndip = nvoid_Ndip/nprocs
* Sommerfeld table - same as above, but it is not divided among processors.
* Part of the memory is currently not distributed among processors - see issues 160,175.
*/
MAXIMIZE(memPeak,memory);
double memSum=AccumulateMax(memPeak,&memmax);
if (IFROOT) {
PrintBoth(logfile,"Total memory usage: "FFORMM" MB\n",memSum/MBYTE);
#ifdef PARALLEL
PrintBoth(logfile,"Maximum memory usage of single processor: "FFORMM" MB\n",memmax/MBYTE);
#endif
#ifdef OPENCL
PrintBoth(logfile,"OpenCL memory usage: peak total - "FFORMM" MB, maximum object - "FFORMM" MB\n",
oclMemPeak/MBYTE,oclMemMaxObj/MBYTE);
#endif
}
}
//======================================================================================================================
void FreeEverything(void)
/* frees all allocated vectors; should not be called in prognosis mode, since arrays are not
* actually allocated. Also called from matvec.c and oclmatvec.c in PRECISE_TIMING.
*/
{
FreeInteraction();
#ifndef SPARSE
Free_FFT_Dmat();
Free_cVector(expsX);
Free_cVector(expsY);
Free_cVector(expsZ);
Free_general(position); // allocated in MakeParticle();
#else
Free_general(position_full); // allocated in MakeParticle();
Free_cVector(arg_full);
#endif // SPARSE
Free_cVector(xvec);
Free_cVector(rvec);
Free_cVector(pvec);
Free_cVector(Einc);
Free_cVector(Avecbuffer);
/* The following can be automated to some extent, either using the information from structure array 'params' in
* iterative.c or checking each vector for being NULL. However, it will anyway require manual editing if additional
* (e.g. fourth) vector will be added.
*/
switch (IterMethod) {
case IT_BCGS2:
Free_cVector(vec1);
Free_cVector(vec2);
Free_cVector(vec3);
Free_cVector(vec4);
break;
case IT_CGNR:
case IT_BICG_CS:
break;
case IT_BICGSTAB:
case IT_QMR_CS:
Free_cVector(vec1);
Free_cVector(vec2);
Free_cVector(vec3);
break;
case IT_CSYM:
case IT_QMR_CS_2:
Free_cVector(vec1);
Free_cVector(vec2);
break;
}
/* TO ADD NEW ITERATIVE SOLVER
* Add here a case corresponding to the new iterative solver. It should free the extra vectors that were allocated
* in AllocateEverything() above.
*/
if (yzplane) {
Free_cVector(EyzplX);
Free_cVector(EyzplY);
}
if (scat_plane) {
Free_cVector(EplaneX);
Free_cVector(EplaneY);
}
if (all_dir) {
Free_general(theta_int.val);
Free_general(phi_int.val);
Free_cVector(E_ad);
Free_general(E2_alldir);
}
if (scat_grid) {
Free_general(angles.theta.val);
Free_general(angles.phi.val);
Free_cVector(EgridX);
Free_cVector(EgridY);
if (phi_integr && IFROOT) {
Free_general(muel_phi);
Free_general(muel_phi_buf);
}
}
// these 2 were allocated in MakeParticle
Free_general(DipoleCoord);
Free_general(material);
if (orient_avg) {
if (IFROOT) {
if (store_mueller) {
Free_cVector(ampl_alphaX);
Free_cVector(ampl_alphaY);
}
Free_general(muel_alpha-2);
Free_general(out);
}
Free_general(alpha_int.val);
Free_general(beta_int.val);
Free_general(gamma_int.val);
}
#ifdef OPENCL
oclunload();
#endif
}
//======================================================================================================================
void Calculator (void)
{
char fname[MAX_FNAME];
// initialize variables
#ifdef OPENCL
TIME_TYPE start_ocl_init=GET_TIME();
oclinit();
Timing_OCL_Init=GET_TIME()-start_ocl_init;
#endif
if (nTheta!=0) {
dtheta_deg = 180.0 / ((double)(nTheta-1));
dtheta_rad = Deg2Rad(dtheta_deg);
block_theta= 16*(size_t)nTheta;
if (TestExtendThetaRange()) nTheta=2*(nTheta-1);
}
else block_theta=dtheta_deg=dtheta_rad=0;
finish_avg=false;
// Do preliminary setup for MatVec
TIME_TYPE startInitInt=GET_TIME();
InitInteraction();
Timing_Init_Int=GET_TIME()-startInitInt;
#ifndef SPARSE
// initialize D matrix (for matrix-vector multiplication)
D("InitDmatrix started");
InitDmatrix();
D("InitDmatrix finished");
#endif // !SPARSE
// allocate most (that is not already allocated; perform memory analysis
AllocateEverything();
// finish initialization
if (!orient_avg) alpha_int.N=1;
Timing_Init = GET_TIME() - tstart_main;