-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
238 lines (201 loc) · 9.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
This script is a modification of work originally created by Bill Peebles, Saining Xie, and Ikko Eltociear Ashimine
Original work licensed under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
Original source: https://github.com/facebookresearch/DiT
License: https://creativecommons.org/licenses/by-nc/4.0/
"""
import os
import argparse
import logging
from copy import deepcopy
from glob import glob
from time import time
import torch
# the first flag below was False when we tested this script but True makes A100 training a lot faster:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from torch.utils.data import Dataset, DataLoader
import numpy as np
from collections import OrderedDict
from accelerate import Accelerator
from PIL import Image
from models.edimt import EDiMT_models
from diffusion import create_diffusion
#################################################################################
# Training Helper Functions #
#################################################################################
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
name = name.replace("module.", "")
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
logging.basicConfig(
level=logging.INFO,
format='[\033[34m%(asctime)s\033[0m] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
return logger
class CustomDataset(Dataset):
def __init__(self, features_dir, labels_dir):
self.features_dir = features_dir
self.labels_dir = labels_dir
self.features_files = sorted(os.listdir(features_dir))
self.labels_files = sorted(os.listdir(labels_dir))
def __len__(self):
assert len(self.features_files) == len(self.labels_files), \
"Number of feature files and label files should be same"
return len(self.features_files)
def __getitem__(self, idx):
feature_file = self.features_files[idx]
label_file = self.labels_files[idx]
features = np.load(os.path.join(self.features_dir, feature_file))
labels = np.load(os.path.join(self.labels_dir, label_file))
return torch.from_numpy(features), torch.from_numpy(labels)
#################################################################################
# Training Loop #
#################################################################################
def main(args):
"""
Trains a new latent diffusion model.
"""
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# Setup accelerator:
accelerator = Accelerator()
device = accelerator.device
# Setup an experiment folder:
if accelerator.is_main_process:
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.model.replace("/", "-") # e.g., EDiMT-L/2 --> EDiMT-L-2 (for naming folders)
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
# Create model:
assert args.image_size % 8 == 0, "Image size must be divisible by 8 (for the VAE encoder)."
latent_size = args.image_size // 8
model = EDiMT_models[args.model](
input_size=latent_size,
num_classes=args.num_classes
)
# Note that parameter initialization is done within the model constructor
model = model.to(device)
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
requires_grad(ema, False)
diffusion = create_diffusion(timestep_respacing="") # default: 1000 steps, linear noise schedule
if accelerator.is_main_process:
logger.info(f"{args.model} Parameters: {sum(p.numel() for p in model.parameters()):,}")
# Setup optimizer:
opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0)
# Setup data:
features_dir = f"{args.feature_path}/imagenet256_features"
labels_dir = f"{args.feature_path}/imagenet256_labels"
dataset = CustomDataset(features_dir, labels_dir)
loader = DataLoader(
dataset,
batch_size=int(args.global_batch_size // accelerator.num_processes),
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
if accelerator.is_main_process:
logger.info(f"Dataset contains {len(dataset):,} images ({args.feature_path})")
# Prepare models for training:
update_ema(ema, model, decay=0) # Ensure EMA is initialized with synced weights
model.train() # important! This enables embedding dropout for classifier-free guidance
ema.eval() # EMA model should always be in eval mode
model, opt, loader = accelerator.prepare(model, opt, loader)
# Variables for monitoring/logging purposes:
train_steps = 0
log_steps = 0
running_loss = 0
start_time = time()
if accelerator.is_main_process:
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(args.epochs):
if accelerator.is_main_process:
logger.info(f"Beginning epoch {epoch}...")
for x, y in loader:
x = x.to(device)
y = y.to(device)
x = x.squeeze(dim=1)
y = y.squeeze(dim=1)
t = torch.randint(0, diffusion.num_timesteps, (x.shape[0],), device=device)
model_kwargs = dict(y=y)
loss_dict = diffusion.training_losses(model, x, t, model_kwargs)
loss = loss_dict["loss"].mean()
opt.zero_grad()
accelerator.backward(loss)
opt.step()
update_ema(ema, model)
# Log loss values:
running_loss += loss.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
avg_loss = avg_loss.item() / accelerator.num_processes
if accelerator.is_main_process:
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time()
# Save model checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if accelerator.is_main_process:
checkpoint = {
"model": model.module.state_dict(),
"ema": ema.state_dict(),
"opt": opt.state_dict(),
"args": args
}
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
if accelerator.is_main_process:
logger.info("Done!")
# To launch EDiMT-L/2 training with multiple GPUs on one node:
# accelerate launch --multi_gpu --mixed_precision fp16 --model EDiMT-L/2 train.py
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--feature-path", type=str, default="/dataset/imagenet_features")
parser.add_argument("--results-dir", type=str, default="results")
parser.add_argument("--model", type=str, choices=list(EDiMT_models.keys()), default="EDiMT-L/2")
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--epochs", type=int, default=1400)
parser.add_argument("--global-batch-size", type=int, default=256)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="ema") # Choice doesn't affect training
parser.add_argument("--num-workers", type=int, default=4)
parser.add_argument("--log-every", type=int, default=100)
parser.add_argument("--ckpt-every", type=int, default=50_000)
args = parser.parse_args()
main(args)