-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_pcl.py
658 lines (556 loc) · 28.5 KB
/
main_pcl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
#################################################################
# extended and adapted from:
# https://github.com/salesforce/PCL
#################################################################
import argparse
import builtins
import math
import os
import random
import shutil
import time
import warnings
from tqdm import tqdm
import numpy as np
import faiss
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
from torch.utils.data import DataLoader, ConcatDataset
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
from sklearn.neighbors import KNeighborsClassifier
import pcl.loader
import pcl.builder
from pcl.paths import *
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-a', '--arch', metavar='ARCH', default='3dresnet',
choices=["3dresnet", "densenet"],
help='encoder architecture')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--accumulation-steps', default=1, type=int)
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--latent_dim', default=128, type=int,
help='feature dimension (default: 128)')
parser.add_argument('--pcl-r', default=16384, type=int,
help='queue size; number of negative pairs; needs to be smaller than num_cluster (default: 16384)')
parser.add_argument('--moco-m', default=0.999, type=float,
help='moco momentum of updating key encoder (default: 0.999)')
parser.add_argument('--temperature', default=0.2, type=float,
help='softmax temperature')
parser.add_argument('--mlp', action='store_true',
help='use mlp head')
parser.add_argument('--aug-plus', action='store_true',
help='use moco-v2/SimCLR data augmentation')
parser.add_argument('--cos', action='store_true',
help='use cosine lr schedule')
parser.add_argument('--num-cluster', default='25000,50000,100000', type=str,
help='number of clusters')
parser.add_argument('--warmup-epoch', default=20, type=int,
help='number of warm-up epochs to only train with InfoNCE loss')
parser.add_argument('--exp-dir', default='experiment_pcl', type=str,
help='experiment directory')
# Which dataset?
parser.add_argument('--dataset', default='ukbb', choices=["ukbb", "adni", "ukbb_adni"],
help='Which dataset to use for PCL.')
# For ADNI
parser.add_argument('--adni-labels', default='0,1,2', type=str,
help='The labels of ADNI samples that are considered for PCL')
parser.add_argument('--adni_fold_idx', default=0, type=int,
help="Which fold idx of the ADNI dataset")
# For using UKBB metadata
parser.add_argument('--use_ukbb_metadata', action='store_true', default=False,
help='If True, PCL on images + metadata (y-aware InfoNCE). Else, PCL only on images.')
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
args.num_cluster = args.num_cluster.split(',')
args.adni_labels = [int(label) for label in args.adni_labels.split(',')]
if not os.path.exists(args.exp_dir):
os.mkdir(args.exp_dir)
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
print("=> creating model '{}'".format(args.arch))
model = pcl.builder.MoCo(
base_encoder_arch=args.arch,
dim=args.latent_dim, r=args.pcl_r, m=args.moco_m, T=args.temperature, mlp=args.mlp, y_aware=args.use_ukbb_metadata)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
# comment out the following line for debugging
raise NotImplementedError("Only DistributedDataParallel is supported.")
else:
# AllGather implementation (batch shuffle, queue update, etc.) in
# this code only supports DistributedDataParallel.
raise NotImplementedError("Only DistributedDataParallel is supported.")
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# ----- Training data -----
# UKBB dataset (img + tab)
if args.dataset == "ukbb" and args.use_ukbb_metadata:
train_dataset = pcl.loader.UkbbMRITabDataset(split="train", csv_file_path="data_split/img_tab.csv")
eval_dataset = pcl.loader.UkbbMRITabDataset(split="val", csv_file_path="data_split/img_tab.csv")
# UKBB dataset
elif args.dataset == "ukbb" and not args.use_ukbb_metadata:
train_dataset = pcl.loader.UkbbMRIDataset(split="train", csv_file_path="data_split/img.csv")
eval_dataset = pcl.loader.UkbbMRIDataset(split="val", csv_file_path="data_split/img.csv")
# ADNI dataset
elif args.dataset == "adni":
train_dataset = pcl.loader.AdniMRIDataset(split="train", path=os.path.join(ADNI_DATA_PATH, f"{args.adni_fold_idx}-train.h5"),
labels=args.adni_labels)
eval_dataset = pcl.loader.AdniMRIDataset(split="val", path=os.path.join(ADNI_DATA_PATH, f"{args.adni_fold_idx}-train.h5"),
labels=args.adni_labels)
# UKBB + ADNI datasets
elif args.dataset == "ukbb_adni":
train_ukbb_dataset = pcl.loader.UkbbMRIDataset(split="train", csv_file_path="data_split/img.csv")
train_adni_dataset = pcl.loader.AdniMRIDataset(split="train", path=os.path.join(ADNI_DATA_PATH, f"{args.adni_fold_idx}-train.h5"))
train_dataset = ConcatDataset([train_ukbb_dataset, train_adni_dataset])
eval_ukbb_dataset = pcl.loader.UkbbMRIDataset(split="val", csv_file_path="data_split/img.csv")
eval_adni_dataset = pcl.loader.AdniMRIDataset(split="val", path=os.path.join(ADNI_DATA_PATH, f"{args.adni_fold_idx}-train.h5"))
eval_dataset = ConcatDataset([eval_ukbb_dataset, eval_adni_dataset])
# ----- Validation data (ADNI) -----
train_adni_dataset = pcl.loader.AdniMRIDataset_nonPCL(path=os.path.join(ADNI_DATA_PATH, f"{args.adni_fold_idx}-train.h5"),
labels=args.adni_labels)
eval_adni_dataset = pcl.loader.AdniMRIDataset_nonPCL(path=os.path.join(ADNI_DATA_PATH, f"{args.adni_fold_idx}-valid.h5"),
labels=args.adni_labels)
train_adni_dataloader = DataLoader(train_adni_dataset, batch_size=2,
num_workers=4, drop_last=False, pin_memory=False,
shuffle=False)
val_adni_dataloader = DataLoader(eval_adni_dataset, batch_size=2,
num_workers=2, pin_memory=False,
shuffle=False)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
eval_sampler = torch.utils.data.distributed.DistributedSampler(eval_dataset,shuffle=False)
else:
train_sampler = None
eval_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=False, sampler=train_sampler, drop_last=True)
# dataloader for center-cropped images, use larger batch size to increase speed
eval_loader = torch.utils.data.DataLoader(
eval_dataset, batch_size=args.batch_size*5, shuffle=False,
sampler=eval_sampler, num_workers=args.workers, pin_memory=False)
# Set up writer
tb_writer = SummaryWriter(log_dir=f"{TENSORBOARD_DIR}/{args.exp_dir}")
# Log hyperparams
hparams = {
"epochs": args.epochs,
"start_epoch": args.start_epoch,
"batch_size": args.batch_size,
"acc_steps": args.accumulation_steps,
"lr": args.lr,
"schedule": ",".join([str(num) for num in args.schedule]),
"momentum": args.momentum,
"weight_decay": args.weight_decay,
"latent_dim": args.latent_dim,
"pcl_r": args.pcl_r,
"moco_m": args.moco_m,
"temperature": args.temperature,
"mlp": args.mlp,
"cos": args.cos,
"num_cluster": ",".join([str(num) for num in args.num_cluster]),
"warmup_epoch": args.warmup_epoch
}
print("hparams", hparams)
tb_writer.add_hparams(hparams, {})
# Set up variables to store best losses
# best_protonce_loss = np.inf
best_total_loss = np.inf
save_next_cluster = False
for epoch in range(args.start_epoch, args.epochs):
cluster_result = None
if epoch>=args.warmup_epoch:
# compute momentum features for center-cropped images
features = compute_features(eval_loader, model, args)
# placeholder for clustering result
cluster_result = {'im2cluster':[],'centroids':[],'density':[]}
for num_cluster in args.num_cluster:
cluster_result['im2cluster'].append(torch.zeros(len(eval_dataset),dtype=torch.long).cuda())
cluster_result['centroids'].append(torch.zeros(int(num_cluster),args.latent_dim).cuda())
cluster_result['density'].append(torch.zeros(int(num_cluster)).cuda())
if args.gpu == 0:
features[torch.norm(features,dim=1)>1.5] /= 2 #account for the few samples that are computed twice
features = features.numpy()
cluster_result = run_kmeans(features,args) #run kmeans clustering on master node
# Save the cluster that resulted from the best model (from the previous epoch)
if save_next_cluster:
torch.save(cluster_result, os.path.join(TENSORBOARD_DIR, args.exp_dir, 'clusters_%d'%epoch))
save_next_cluster = False
dist.barrier()
# broadcast clustering result
for k, data_list in cluster_result.items():
for data_tensor in data_list:
dist.broadcast(data_tensor, 0, async_op=False)
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
print("Training...")
total_loss = train(train_loader, model, criterion, optimizer, epoch, args, tb_writer, cluster_result)
if total_loss < best_total_loss and epoch >= args.warmup_epoch: # The second condition ensures that the total_loss includes ProtoNCE loss
# Save best model (encoder + momentum encoder)
saved_checkpoints = [f for f in os.listdir(args.exp_dir) if f.startswith("checkpoint_")]
if len(saved_checkpoints) > 0:
os.remove(os.path.join(args.exp_dir, saved_checkpoints[0]))
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best=False, filename='{}/{}/checkpoint_{:04d}.pth.tar'.format(TENSORBOARD_DIR, args.exp_dir, epoch))
# Save the cluster that resulted in this best model
saved_clusters = [f for f in os.listdir(args.exp_dir) if f.startswith("clusters_")]
if len(saved_clusters) > 0:
for sc in saved_clusters:
os.remove(os.path.join(args.exp_dir, sc))
torch.save(cluster_result, os.path.join(args.exp_dir, 'clusters_%d'%epoch))
best_total_loss = total_loss
save_next_cluster = True
# Validation on ADNI dataset with kNN
print("Validating...")
model.eval()
neigh = KNeighborsClassifier(n_neighbors=5)
train_latent_features = torch.Tensor([])
train_targets = torch.Tensor([])
for train_batch in tqdm(train_adni_dataloader):
with torch.no_grad():
images = train_batch[0].cuda()
latent_features = model(im_q=images, is_eval=True)
train_latent_features = torch.cat([train_latent_features, latent_features.detach().cpu()], dim=0)
target = train_batch[1]
train_targets = torch.cat([train_targets, target], dim=0)
neigh.fit(train_latent_features, train_targets)
total_val_acc = 0
for i, val_batch in tqdm(enumerate(val_adni_dataloader)):
with torch.no_grad():
batch_idx = epoch * len(val_adni_dataloader) + i
images = val_batch[0].cuda()
latent_features = model(im_q=images, is_eval=True)
pred = torch.Tensor(neigh.predict(latent_features.cpu()))
target = val_batch[1]
acc = (pred == target).sum() / len(target)
tb_writer.add_scalar("val_adni_acc", acc, batch_idx)
total_val_acc += acc
avg_val_acc = total_val_acc / len(val_adni_dataloader)
tb_writer.add_scalar("val_adni_acc_epoch", avg_val_acc, epoch)
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
def train(train_loader, model, criterion, optimizer, epoch, args, tb_writer, cluster_result=None):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
acc_inst = AverageMeter('Acc@Inst', ':6.2f')
acc_proto = AverageMeter('Acc@Proto', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, acc_inst, acc_proto],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
total_losses = []
for i, (images, index, labels) in enumerate(train_loader): # labels here are not labels of the samples, but y_aware labels
batch_idx = epoch * len(train_loader) + i
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images[0] = images[0].cuda(args.gpu, non_blocking=False) # Original: non_blocking=True
images[1] = images[1].cuda(args.gpu, non_blocking=False)
if labels.size()[1] > 0: # The dimension of the labels is at least 1 (There is at least a label) -> (B, num_labels)
loss, output_proto, target_proto = model(im_q=images[0], im_k=images[1], cluster_result=cluster_result, index=index, labels=labels)
# InfoNCE loss
tb_writer.add_scalar("train_y_aware_infonce_loss", loss, batch_idx)
else: # If no labels are given, then labels.shape is (B, 0)
labels = None
output, target, output_proto, target_proto = model(im_q=images[0], im_k=images[1], cluster_result=cluster_result, index=index, labels=labels)
# InfoNCE loss
loss = criterion(output, target)
tb_writer.add_scalar("train_infonce_loss", loss, batch_idx)
acc = accuracy(output, target)[0]
tb_writer.add_scalar("train_acc", acc, batch_idx)
acc_inst.update(acc[0], images[0].size(0))
# ProtoNCE loss
if output_proto is not None:
loss_proto = 0
for proto_out, proto_target in zip(output_proto, target_proto): # Iterate through all sets of prototypes
loss_proto += criterion(proto_out, proto_target)
accp = accuracy(proto_out, proto_target)[0]
acc_proto.update(accp[0], images[0].size(0))
# average loss across all sets of prototypes
loss_proto /= len(args.num_cluster)
tb_writer.add_scalar("train_protonce_loss", loss_proto, batch_idx)
loss += loss_proto
tb_writer.add_scalar("train_loss", loss, batch_idx)
losses.update(loss.item(), images[0].size(0))
total_losses.append(loss.item())
# compute gradient and do SGD step
loss.backward()
if (i + 1) % args.accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if len(total_losses) > 0:
avg_total_loss = np.sum(np.array(total_losses)) / len(total_losses)
else:
avg_total_loss = np.inf
return avg_total_loss
def compute_features(eval_loader, model, args):
print('Computing features...')
model.eval()
features = torch.zeros(len(eval_loader.dataset),args.latent_dim).cuda()
for i, (images, index, labels) in enumerate(tqdm(eval_loader)):
with torch.no_grad():
images = images.cuda(non_blocking=False) # Original: non_blocking=True
feat = model(images,is_eval=True)
features[index] = feat
dist.barrier()
dist.all_reduce(features, op=dist.ReduceOp.SUM)
return features.cpu()
def run_kmeans(x, args):
"""
Args:
x: data to be clustered
"""
print('performing kmeans clustering')
results = {'im2cluster':[],'centroids':[],'density':[]}
for seed, num_cluster in enumerate(args.num_cluster):
# intialize faiss clustering parameters
d = x.shape[1]
k = int(num_cluster)
clus = faiss.Clustering(d, k)
clus.verbose = True
clus.niter = 20
clus.nredo = 5
clus.seed = seed
clus.max_points_per_centroid = 1000
clus.min_points_per_centroid = 10
res = faiss.StandardGpuResources()
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = args.gpu
index = faiss.GpuIndexFlatL2(res, d, cfg)
clus.train(x, index)
D, I = index.search(x, 1) # for each sample, find cluster distance and assignments
im2cluster = [int(n[0]) for n in I]
# get cluster centroids
centroids = faiss.vector_to_array(clus.centroids).reshape(k,d)
# sample-to-centroid distances for each cluster
Dcluster = [[] for c in range(k)]
for im,i in enumerate(im2cluster):
Dcluster[i].append(D[im][0])
# concentration estimation (phi)
density = np.zeros(k)
for i,dist in enumerate(Dcluster):
if len(dist)>1:
d = (np.asarray(dist)**0.5).mean()/np.log(len(dist)+10)
density[i] = d
#if cluster only has one point, use the max to estimate its concentration
dmax = density.max()
for i,dist in enumerate(Dcluster):
if len(dist)<=1:
density[i] = dmax
density = density.clip(np.percentile(density,10),np.percentile(density,90)) #clamp extreme values for stability
density = args.temperature*density/density.mean() #scale the mean to temperature
# convert to cuda Tensors for broadcast
centroids = torch.Tensor(centroids).cuda()
centroids = nn.functional.normalize(centroids, p=2, dim=1)
im2cluster = torch.LongTensor(im2cluster).cuda()
density = torch.Tensor(density).cuda()
results['centroids'].append(centroids)
results['density'].append(density)
results['im2cluster'].append(im2cluster)
return results
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()