forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinaryArithmeticKernel.cu
98 lines (88 loc) · 3.69 KB
/
BinaryArithmeticKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include <ATen/Dispatch.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/zmath.cuh>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/BinaryOps.h>
#include <c10/macros/Macros.h>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at { namespace native {
void add_kernel_cuda(TensorIterator& iter, Scalar alpha_scalar) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kHalf, kBool, kBFloat16, iter.common_dtype(), "add_cuda/sub_cuda", [&]() {
using thrust_t = typename ztype_cuda<scalar_t>::thrust_t;
auto alpha = thrust_t(alpha_scalar.to<scalar_t>());
gpu_kernel_with_scalars(iter, [alpha]GPU_LAMBDA(thrust_t a, thrust_t b) -> thrust_t {
return a + alpha * b;
});
});
}
static void sub_kernel_cuda(TensorIterator& iter, Scalar alpha_scalar) {
add_kernel_cuda(iter, -alpha_scalar);
}
void div_kernel_cuda(TensorIterator& iter) {
if (!isIntegralType(iter.common_dtype(), /*includeBool*/ false) && iter.is_cpu_scalar(2)) {
// optimization for floating-point types: if the second operand is a CPU
// scalar, compute a * reciprocal(b). Note that this may lose one bit of
// precision compared to computing the division.
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "div_cuda", [&]() {
using thrust_t = typename ztype_cuda<scalar_t>::thrust_t;
auto inv_b = thrust_t(1.0) / thrust_t(iter.scalar_value<scalar_t>(2));
iter.remove_operand(2);
gpu_kernel(iter, [inv_b]GPU_LAMBDA(thrust_t a) -> thrust_t {
return a * inv_b;
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kHalf, kBFloat16, iter.common_dtype(), "div_cuda", [&]() {
using thrust_t = typename ztype_cuda<scalar_t>::thrust_t;
gpu_kernel_with_scalars(iter, []GPU_LAMBDA(thrust_t a, thrust_t b) -> thrust_t {
return a / b;
});
});
}
}
void mul_kernel_cuda(TensorIterator& iter) {
if (iter.common_dtype() == ScalarType::Bool) {
// Workaround for the error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
gpu_kernel_with_scalars(iter, []GPU_LAMBDA(bool a, bool b) -> bool {
return a && b;
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kHalf, kBFloat16, iter.common_dtype(), "mul_cuda", [&]() {
using thrust_t = typename ztype_cuda<scalar_t>::thrust_t;
gpu_kernel_with_scalars(iter, []GPU_LAMBDA(thrust_t a, thrust_t b) -> thrust_t {
return a * b;
});
});
}
}
void remainder_kernel_cuda(TensorIterator& iter) {
if (isIntegralType(iter.dtype(), /*includeBool*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "remainder_cuda", [&]() {
using thrust_t = typename ztype_cuda<scalar_t>::thrust_t;
gpu_kernel_with_scalars(iter, []GPU_LAMBDA(thrust_t a, thrust_t b) -> thrust_t {
CUDA_KERNEL_ASSERT(b != 0);
thrust_t r = a % b;
if ((r != 0) && ((r < 0) != (b < 0))) {
r += b;
}
return r;
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.dtype(), "remainder_cuda", [&]() {
using thrust_t = typename ztype_cuda<scalar_t>::thrust_t;
gpu_kernel_with_scalars(iter,
[]GPU_LAMBDA(thrust_t a, thrust_t b) __ubsan_ignore_float_divide_by_zero__ -> thrust_t {
return a - b * static_cast<thrust_t>(std::floor(a / b));
});
});
}
}
REGISTER_DISPATCH(add_stub, &add_kernel_cuda);
REGISTER_DISPATCH(sub_stub, &sub_kernel_cuda);
REGISTER_DISPATCH(div_stub, &div_kernel_cuda);
REGISTER_DISPATCH(mul_stub, &mul_kernel_cuda);
REGISTER_DISPATCH(remainder_stub, &remainder_kernel_cuda);
}} // namespace at::native