forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DistanceKernel.cu
379 lines (322 loc) · 18.3 KB
/
DistanceKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#include <ATen/ATen.h>
#include <ATen/cuda/Exceptions.h>
#include <THC/THCTensorMathReduce.cuh>
#include <math.h>
#include <ATen/native/Distance.h>
#include <c10/macros/Macros.h>
namespace at { namespace native {
namespace {
static const int forward_threads = 256;
template <typename scalar_t>
static __forceinline__ __device__ scalar_t device_sqrt(scalar_t val);
template <>
__forceinline__ __device__ float device_sqrt(float val) {
return ::sqrtf(val);
}
template <>
__forceinline__ __device__ double device_sqrt(double val) {
return ::sqrt(val);
}
template <typename scalar_t>
struct dists {
static __forceinline__ __device__ scalar_t sign(scalar_t val) {
return (0 < val) - (val < 0);
}
// Zero norm
struct zero {
static __forceinline__ __device__ void inc(scalar_t& agg, const scalar_t diff, const scalar_t p) { agg += diff != 0.0; }
static __forceinline__ __device__ scalar_t finish(const scalar_t agg, const scalar_t p) { return agg; }
static __forceinline__ __device__ void agg(scalar_t& update, const scalar_t other) { update += other; }
};
// One norm
struct one {
static __forceinline__ __device__ void inc(scalar_t& agg, const scalar_t diff, const scalar_t p) { agg += diff; }
static __forceinline__ __device__ scalar_t finish(const scalar_t agg, const scalar_t p) { return agg; }
static __forceinline__ __device__ void agg(scalar_t& update, const scalar_t other) { update += other; }
static __forceinline__ __device__ scalar_t backward(const scalar_t diff, const scalar_t grad, const scalar_t dist, const scalar_t p) { return grad * sign(diff); }
};
// Special case backward when p is less than two
struct lt_two {
static __forceinline__ __device__ scalar_t backward(const scalar_t diff, const scalar_t grad, const scalar_t dist, const scalar_t p) { return dist == 0.0 ? 0 : sign(diff) * std::pow(std::abs(diff), p - 1) * grad / std::pow(dist, p - 1); }
};
// Two norm
struct two {
static __forceinline__ __device__ void inc(scalar_t& agg, const scalar_t diff, const scalar_t p) { agg += diff * diff; }
static __forceinline__ __device__ scalar_t finish(const scalar_t agg, const scalar_t p) { return device_sqrt<scalar_t>(agg); }
static __forceinline__ __device__ void agg(scalar_t& update, const scalar_t other) { update += other; }
static __forceinline__ __device__ scalar_t backward(const scalar_t diff, const scalar_t grad, const scalar_t dist, const scalar_t p) { return dist == 0.0 ? 0 : grad * diff / dist; }
};
// General p norm
struct p {
static __forceinline__ __device__ void inc(scalar_t& agg, const scalar_t diff, const scalar_t p) { agg += std::pow(diff, p); }
static __forceinline__ __device__ scalar_t finish(const scalar_t agg, const scalar_t p) { return std::pow(agg, static_cast<scalar_t>(1) / p); }
static __forceinline__ __device__ void agg(scalar_t& update, const scalar_t other) { update += other; }
static __forceinline__ __device__ scalar_t backward(const scalar_t diff, const scalar_t grad, const scalar_t dist, const scalar_t p) { return dist == 0.0 ? 0 : diff * std::pow(std::abs(diff), p - 2) * grad / std::pow(dist, p - 1); }
};
// Inf norm
struct inf {
static __forceinline__ __device__ void inc(scalar_t& agg, const scalar_t diff, const scalar_t p) { if (diff > agg) { agg = diff; } }
static __forceinline__ __device__ scalar_t finish(const scalar_t agg, const scalar_t p) { return agg; }
static __forceinline__ __device__ void agg(scalar_t& update, const scalar_t other) { if (other > update) { update = other; } }
static __forceinline__ __device__ scalar_t backward(const scalar_t diff, const scalar_t grad, const scalar_t dist, const scalar_t p) { return grad * sign(diff) * (std::abs(diff) == dist); }
};
};
template <typename scalar_t, typename F>
__device__ static inline scalar_t reduce_agg(scalar_t agg) {
for (int offset = warpSize / 2; offset > 0; offset /= 2) {
F::agg(agg, WARP_SHFL_DOWN(agg, offset));
}
__shared__ scalar_t shared[forward_threads];
int lane = threadIdx.x % warpSize;
int warp_id = threadIdx.x / warpSize;
if (lane == 0) {
shared[warp_id] = agg;
}
__syncthreads();
agg = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : 0.0;
if (warp_id == 0) {
for (int offset = blockDim.x / warpSize / 2; offset > 0; offset /= 2) {
F::agg(agg, WARP_SHFL_DOWN(agg, offset));
}
}
return agg;
}
template <typename scalar_t, typename F>
__global__ static void pdist_kernel_cuda_impl(scalar_t * result, const scalar_t * self, const int64_t n, const int64_t m, const scalar_t p,
const double n2, const double n2_squared_minus_1) {
const int64_t k = blockIdx.x;
const int stride = blockDim.x;
// The -1 accounts for floating point truncation issues
int64_t i = static_cast<int64_t>((n2 - device_sqrt<double>(n2_squared_minus_1 - 2 * k)));
int64_t j = k - n * i + i * (i + 1) / 2 + i + 1;
const scalar_t * const start = self + i * m;
const scalar_t * const end = start + m;
const scalar_t * a = start + threadIdx.x;
const scalar_t * b = self + j * m + threadIdx.x;
scalar_t agg = 0.0;
for (; a < end; a += stride, b += stride) {
F::inc(agg, std::abs(*a - *b), p);
}
agg = reduce_agg<scalar_t, F>(agg);
if (threadIdx.x == 0) {
result[k] = F::finish(agg, p);
}
}
template <typename scalar_t, typename F>
__global__ static void cdist_backward_kernel_cuda_impl(scalar_t * buffer, const scalar_t * grad, const scalar_t * x1, const scalar_t * x2, const scalar_t * dist, int64_t gs,
const scalar_t p, const int64_t r1, const int64_t r2, const int64_t m, const int64_t count, const int64_t r_size, const int64_t l1_size, const int64_t l2_size) {
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int init = blockIdx.x * blockDim.x + threadIdx.x;
if (y >= count || init >= m) {
return;
}
const int l = y / r_size;
const int k = y % r_size;
const int stride = blockDim.x * gridDim.x;
const int l_size = r_size * m;
int64_t i = k / r2;
int64_t j = k % r2;
const scalar_t grad_k = grad[y];
const scalar_t dist_k = dist[y];
const scalar_t * const start = x1 + l * l1_size + i * m;
const scalar_t * const end = start + m;
const scalar_t * self_i = start + init;
const scalar_t * self_j = x2 + l * l2_size + j * m + init;
scalar_t * buff_i = buffer + l * l_size + (r1 * j + i) * m + init;
for (; self_i < end; self_i += stride, self_j += stride, buff_i += stride) {
const scalar_t res = F::backward(*self_i - *self_j, grad_k, dist_k, p);
*buff_i = res;
}
}
template <typename scalar_t, typename F>
__global__ static void pdist_backward_kernel_cuda_impl(scalar_t * buffer, const scalar_t * grad, const scalar_t * self, const scalar_t * dist, int64_t gs, const int64_t n, const int64_t m, const int64_t combs, const scalar_t p,
const double n2, const double n2_squared_minus_1) {
const int64_t k = blockIdx.x * blockDim.x + threadIdx.x;
const int init = blockIdx.y * blockDim.y + threadIdx.y;
const int stride = blockDim.y * gridDim.y;
if (k >= combs) {
return;
}
// The -1 accounts for floating point truncation issues
int64_t i = static_cast<int64_t>((n2 - device_sqrt<double>(n2_squared_minus_1 - 2 * k)));
int64_t j = k - n * i + i * (i + 1) / 2 + i + 1;
int64_t ib = j - i - 1;
int64_t jb = n - 2 - i;
const scalar_t grad_k = grad[k * gs];
const scalar_t dist_k = dist[k];
const scalar_t * const start = self + i * m;
const scalar_t * const end = start + m;
const scalar_t * self_i = start + init;
const scalar_t * self_j = self + j * m + init;
scalar_t * buff_i = buffer + (ib * n + i) * m + init;
scalar_t * buff_j = buffer + (jb * n + j) * m + init;
for (; self_i < end; self_i += stride, self_j += stride, buff_i += stride, buff_j += stride) {
const scalar_t res = F::backward(*self_i - *self_j, grad_k, dist_k, p);
*buff_i = res;
*buff_j = -res;
}
}
template <typename scalar_t, typename F>
__global__ static void cdist_kernel_cuda_impl(scalar_t * result, const scalar_t * x1, const scalar_t * x2,
const scalar_t p, const int64_t r1, const int64_t r2, const int64_t m, const int64_t r_size, const int64_t l1_size, const int64_t l2_size) {
const int64_t l = blockIdx.x / r_size;
const int64_t k = blockIdx.x % r_size;
const int64_t i = k / r2;
const int64_t j = k % r2;
const int stride = blockDim.x;
const scalar_t * const start = x1 + l * l1_size + i * m;
const scalar_t * const end = start + m;
const scalar_t * a = start + threadIdx.x;
const scalar_t * b = x2 + l * l2_size + j * m + threadIdx.x;
scalar_t agg = 0.0;
for (; a < end; a += stride, b += stride) {
F::inc(agg, std::abs(*a - *b), p);
}
agg = reduce_agg<scalar_t, F>(agg);
if (threadIdx.x == 0) {
result[blockIdx.x] = F::finish(agg, p);
}
}
void cdist_kernel_impl(Tensor& result, const Tensor& x1, const Tensor& x2, double p) {
const int64_t r1 = x1.size(-2);
const int64_t r2 = x2.size(-2);
const int64_t m = x1.size(-1);
const int64_t r_size = r1 * r2;
const int64_t l1_size = r1 * m;
const int64_t l2_size = r2 * m;
const dim3 grid(result.numel());
const dim3 block(forward_threads);
AT_DISPATCH_FLOATING_TYPES(x1.scalar_type(), "cdist_cuda", [&] {
if (p == 0.0) {
cdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::zero><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), p, r1, r2, m, r_size, l1_size, l2_size);
} else if (p == 1.0) {
cdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::one><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), p, r1, r2, m, r_size, l1_size, l2_size);
} else if (p == 2.0) {
cdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::two><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), p, r1, r2, m, r_size, l1_size, l2_size);
} else if (std::isinf(p)) {
cdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::inf><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), p, r1, r2, m, r_size, l1_size, l2_size);
} else {
cdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::p><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), p, r1, r2, m, r_size, l1_size, l2_size);
}
});
AT_CUDA_CHECK(cudaGetLastError());
}
void pdist_forward_kernel_impl(Tensor& result, const Tensor& self, double p) {
const dim3 grid(result.numel());
const dim3 block(forward_threads);
int64_t n = self.size(0);
int64_t m = self.size(1);
// https://github.com/pytorch/pytorch/issues/15511 demonstrated we need to do
// some math in fp64 -- this is just minimizing the amount of fp64 math we do on the device.
const double n2 = n - .5;
const double n2_squared_minus_1 = n2 * n2 - 1;
AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "pdist_cuda", [&] {
if (p == 0.0) {
pdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::zero><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), n, m, p, n2, n2_squared_minus_1);
} else if (p == 1.0) {
pdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::one><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), n, m, p, n2, n2_squared_minus_1);
} else if (p == 2.0) {
pdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::two><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), n, m, p, n2, n2_squared_minus_1);
} else if (std::isinf(p)) {
pdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::inf><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), n, m, p, n2, n2_squared_minus_1);
} else {
pdist_kernel_cuda_impl<scalar_t, dists<scalar_t>::p><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(result.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), n, m, p, n2, n2_squared_minus_1);
}
});
AT_CUDA_CHECK(cudaGetLastError());
}
void pdist_backward_kernel_impl(Tensor& result, const Tensor& grad, const Tensor& self, const double p, const Tensor& dist) {
if (p == 0.0 || grad.numel() == 0 || self.numel() == 0) {
result.fill_(0);
return;
}
const int64_t n = result.size(0);
int64_t m = self.size(1);
const int block_x = 16;
// NB: be careful with changing block_y; as it's currently written, grid_y is limited to be 2^16.
// block_y of 64 gives us max pdist dim1 of 2**24
const int block_y = 64;
const int grid_x = (dist.numel() + block_x - 1) / block_x;
const int grid_y = (m + block_y * 8 - 1) / (block_y * 8);
const dim3 grid(grid_x, grid_y);
const dim3 block(block_x, block_y);
// https://github.com/pytorch/pytorch/issues/15511 demonstrated we need to do
// some math in fp64 -- this is just minimizing the amount of fp64 math we do on the device.
const double n2 = n - .5;
const double n2_squared_minus_1 = n2 * n2 - 1;
Tensor buffer = at::empty({n - 1, result.size(0), result.size(1)}, result.options());
AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "pdist_cuda_backward", [&] {
if (p == 1.0) {
pdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::one><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(), grad.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(), grad.stride(0), n, m, dist.numel(), p, n2, n2_squared_minus_1);
} else if (p < 2.0) {
pdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::lt_two><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(), grad.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(), grad.stride(0), n, m, dist.numel(), p, n2, n2_squared_minus_1);
} else if (p == 2.0) {
pdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::two><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(), grad.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(), grad.stride(0), n, m, dist.numel(), p, n2, n2_squared_minus_1);
} else if (std::isinf(p)) {
pdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::inf><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(), grad.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(), grad.stride(0), n, m, dist.numel(), p, n2, n2_squared_minus_1);
} else {
pdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::p><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(), grad.data_ptr<scalar_t>(), self.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(), grad.stride(0), n, m, dist.numel(), p, n2, n2_squared_minus_1);
}
});
AT_CUDA_CHECK(cudaGetLastError());
at::sum_out(result, buffer, 0);
}
void cdist_backward_kernel_impl(Tensor& result, const Tensor& grad, const Tensor& x1, const Tensor& x2, const double p, const Tensor& dist) {
if (p == 0.0 || grad.numel() == 0 || x1.numel() == 0 || x2.numel() == 0) {
result.fill_(0);
return;
}
const int64_t r1 = x1.size(-2);
const int64_t r2 = x2.size(-2);
const int64_t m = x1.size(-1);
int64_t batch = x1.dim() > 2 ? x1.size(0) : 1;
const int block_x = 64;
const int block_y = 16;
const int grid_x = (m + block_x * 8 - 1) / (block_x * 8);
const int grid_y = (dist.numel() + block_y - 1) / block_y;
const dim3 grid(grid_x, grid_y);
const dim3 block(block_x, block_y);
const int64_t count = dist.numel();
const int64_t r_size = r1 * r2;
const int64_t l1_size = r1 * m;
const int64_t l2_size = r2 * m;
//current implementation supports only gradient that can be collapsed to 1D. However, to avoid checking this assumption,
//we call grad.contiguous() before backward, so stride is guaranteed to be 1
const int64_t gs = 1;
Tensor buffer = (x1.dim() > 2) ? at::empty({batch, r2, r1, m}, result.options()) : at::empty({r2, r1, m}, result.options());
AT_DISPATCH_FLOATING_TYPES(result.scalar_type(), "cdist_cuda_backward", [&] {
if (p == 1.0) {
cdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::one><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(),
grad.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(),
gs, p, r1, r2, m, count, r_size, l1_size, l2_size);
} else if (p < 2.0) {
cdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::lt_two><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(),
grad.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(),
gs, p, r1, r2, m, count, r_size, l1_size, l2_size);
} else if (p == 2.0) {
cdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::two><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(),
grad.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(),
gs, p, r1, r2, m, count, r_size, l1_size, l2_size);
} else if (std::isinf(p)) {
cdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::inf><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(),
grad.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(),
gs, p, r1, r2, m, count, r_size, l1_size, l2_size);
} else {
cdist_backward_kernel_cuda_impl<scalar_t, dists<scalar_t>::p><<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(buffer.data_ptr<scalar_t>(),
grad.data_ptr<scalar_t>(), x1.data_ptr<scalar_t>(), x2.data_ptr<scalar_t>(), dist.data_ptr<scalar_t>(),
gs, p, r1, r2, m, count, r_size, l1_size, l2_size);
}
});
AT_CUDA_CHECK(cudaGetLastError());
if (x1.dim() > 2) {
at::sum_out(result, buffer, 1);
} else {
at::sum_out(result, buffer, 0);
}
}
} // anonymous namespace
REGISTER_DISPATCH(pdist_forward_stub, &pdist_forward_kernel_impl);
REGISTER_DISPATCH(pdist_backward_stub, &pdist_backward_kernel_impl);
REGISTER_DISPATCH(cdist_stub, &cdist_kernel_impl);
REGISTER_DISPATCH(cdist_backward_stub, &cdist_backward_kernel_impl);
}} // at::native