-
Notifications
You must be signed in to change notification settings - Fork 0
/
msd25_network_trainer.py
181 lines (152 loc) · 10.6 KB
/
msd25_network_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import numpy as np
import tensorflow as tf
import tqdm
from data_providers import MSD10GenreDataProvider
from network_builder import ClassifierNetworkGraph
from utils.parser_utils import ParserClass
from utils.storage import build_experiment_folder, save_statistics, get_best_validation_model_statistics
tf.reset_default_graph() # resets any previous graphs to clear memory
parser = argparse.ArgumentParser(description='Welcome to CNN experiments script') # generates an argument parser
parser_extractor = ParserClass(parser=parser) # creates a parser class to process the parsed input
batch_size, seed, epochs, logs_path, continue_from_epoch, tensorboard_enable, batch_norm, \
strided_dim_reduction, experiment_prefix, dropout_rate_value = parser_extractor.get_argument_variables()
# returns a list of objects that contain
# our parsed input
experiment_name = "experiment_{}_batch_size_{}_bn_{}_mp_{}".format(experiment_prefix,
batch_size, batch_norm,
strided_dim_reduction)
# generate experiment name
rng = np.random.RandomState(seed=seed) # set seed
train_data = MSD10GenreDataProvider(which_set="train", batch_size=batch_size, rng=rng, random_sampling=True)
val_data = MSD10GenreDataProvider(which_set="valid", batch_size=batch_size, rng=rng)
test_data = MSD10GenreDataProvider(which_set="test", batch_size=batch_size, rng=rng)
# setup our data providers
print("Running {}".format(experiment_name))
print("Starting from epoch {}".format(continue_from_epoch))
saved_models_filepath, logs_filepath = build_experiment_folder(experiment_name, logs_path) # generate experiment dir
# Placeholder setup
data_inputs = tf.placeholder(tf.float32, [batch_size, train_data.inputs.shape[1]], 'data-inputs')
data_targets = tf.placeholder(tf.int32, [batch_size], 'data-targets')
training_phase = tf.placeholder(tf.bool, name='training-flag')
rotate_data = tf.placeholder(tf.bool, name='rotate-flag')
dropout_rate = tf.placeholder(tf.float32, name='dropout-prob')
classifier_network = ClassifierNetworkGraph(network_name='FCCClassifier',
input_x=data_inputs, target_placeholder=data_targets,
dropout_rate=dropout_rate, batch_size=batch_size,
n_classes=train_data.num_classes,
is_training=training_phase, augment_rotate_flag=rotate_data,
strided_dim_reduction=strided_dim_reduction,
use_batch_normalization=batch_norm) # initialize our computational graph
if continue_from_epoch == -1: # if this is a new experiment and not continuation of a previous one then generate a new
# statistics file
save_statistics(logs_filepath, "result_summary_statistics", ["epoch", "train_c_loss", "train_c_accuracy",
"val_c_loss", "val_c_accuracy",
"test_c_loss", "test_c_accuracy"], create=True)
start_epoch = continue_from_epoch if continue_from_epoch != -1 else 0 # if new experiment start from 0 otherwise
# continue where left off
summary_op, losses_ops, c_error_opt_op = classifier_network.init_train() # get graph operations (ops)
total_train_batches = train_data.num_batches
total_val_batches = val_data.num_batches
total_test_batches = test_data.num_batches
if tensorboard_enable:
print("saved tensorboard file at", logs_filepath)
writer = tf.summary.FileWriter(logs_filepath, graph=tf.get_default_graph())
init = tf.global_variables_initializer() # initialization op for the graph
with tf.Session() as sess:
sess.run(init) # actually running the initialization op
train_saver = tf.train.Saver() # saver object that will save our graph so we can reload it later for continuation of
val_saver = tf.train.Saver()
best_val_accuracy = 0.
best_epoch = 0
# training or inference
if continue_from_epoch != -1:
train_saver.restore(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, experiment_name,
continue_from_epoch)) # restore previous graph to continue operations
best_val_accuracy, best_epoch = get_best_validation_model_statistics(logs_filepath, "result_summary_statistics")
print(best_val_accuracy, best_epoch)
with tqdm.tqdm(total=epochs - start_epoch) as epoch_pbar:
for e in range(start_epoch, epochs):
total_c_loss = 0.
total_accuracy = 0.
with tqdm.tqdm(total=total_train_batches) as pbar_train:
for batch_idx, (x_batch, y_batch) in enumerate(train_data):
iter_id = e * total_train_batches + batch_idx
_, c_loss_value, acc = sess.run(
[c_error_opt_op, losses_ops["crossentropy_losses"], losses_ops["accuracy"]],
feed_dict={dropout_rate: dropout_rate_value, data_inputs: x_batch,
data_targets: y_batch, training_phase: True, rotate_data: False})
# Here we execute the c_error_opt_op which trains the network and also the ops that compute the
# loss and accuracy, we save those in _, c_loss_value and acc respectively.
total_c_loss += c_loss_value # add loss of current iter to sum
total_accuracy += acc # add acc of current iter to sum
iter_out = "iter_num: {}, train_loss: {}, train_accuracy: {}".format(iter_id,
total_c_loss / (batch_idx + 1),
total_accuracy / (
batch_idx + 1)) # show
# iter statistics using running averages of previous iter within this epoch
pbar_train.set_description(iter_out)
pbar_train.update(1)
if tensorboard_enable and batch_idx % 25 == 0: # save tensorboard summary every 25 iterations
_summary = sess.run(
summary_op,
feed_dict={dropout_rate: dropout_rate_value, data_inputs: x_batch,
data_targets: y_batch, training_phase: True, rotate_data: False})
writer.add_summary(_summary, global_step=iter_id)
total_c_loss /= total_train_batches # compute mean of los
total_accuracy /= total_train_batches # compute mean of accuracy
save_path = train_saver.save(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, experiment_name, e))
# save graph and weights
print("Saved current model at", save_path)
total_val_c_loss = 0.
total_val_accuracy = 0. # run validation stage, note how training_phase placeholder is set to False
# and that we do not run the c_error_opt_op which runs gradient descent, but instead only call the loss ops
# to collect losses on the validation set
with tqdm.tqdm(total=total_val_batches) as pbar_val:
for batch_idx, (x_batch, y_batch) in enumerate(val_data):
c_loss_value, acc = sess.run(
[losses_ops["crossentropy_losses"], losses_ops["accuracy"]],
feed_dict={dropout_rate: dropout_rate_value, data_inputs: x_batch,
data_targets: y_batch, training_phase: False, rotate_data: False})
total_val_c_loss += c_loss_value
total_val_accuracy += acc
iter_out = "val_loss: {}, val_accuracy: {}".format(total_val_c_loss / (batch_idx + 1),
total_val_accuracy / (batch_idx + 1))
pbar_val.set_description(iter_out)
pbar_val.update(1)
total_val_c_loss /= total_val_batches
total_val_accuracy /= total_val_batches
if best_val_accuracy < total_val_accuracy: # check if val acc better than the previous best and if
# so save current as best and save the model as the best validation model to be used on the test set
# after the final epoch
best_val_accuracy = total_val_accuracy
best_epoch = e
save_path = val_saver.save(sess, "{}/best_validation_{}_{}.ckpt".format(saved_models_filepath, experiment_name, e))
print("Saved best validation score model at", save_path)
epoch_pbar.update(1)
# save statistics of this epoch, train and val without test set performance
save_statistics(logs_filepath, "result_summary_statistics",
[e, total_c_loss, total_accuracy, total_val_c_loss, total_val_accuracy,
-1, -1])
val_saver.restore(sess, "{}/best_validation_{}_{}.ckpt".format(saved_models_filepath, experiment_name, best_epoch))
# restore model with best performance on validation set
total_test_c_loss = 0.
total_test_accuracy = 0.
# computer test loss and accuracy and save
with tqdm.tqdm(total=total_test_batches) as pbar_test:
for batch_idx, (x_batch, y_batch) in enumerate(test_data):
c_loss_value, acc = sess.run(
[losses_ops["crossentropy_losses"], losses_ops["accuracy"]],
feed_dict={dropout_rate: dropout_rate_value, data_inputs: x_batch,
data_targets: y_batch, training_phase: False, rotate_data: False})
total_test_c_loss += c_loss_value
total_test_accuracy += acc
iter_out = "test_loss: {}, test_accuracy: {}".format(total_test_c_loss / (batch_idx + 1),
total_test_accuracy / (batch_idx + 1))
pbar_test.set_description(iter_out)
pbar_test.update(1)
total_test_c_loss /= total_test_batches
total_test_accuracy /= total_test_batches
save_statistics(logs_filepath, "result_summary_statistics",
["test set performance", -1, -1, -1, -1,
total_test_c_loss, total_test_accuracy])