-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt19937.h
915 lines (838 loc) · 27.4 KB
/
mt19937.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
#pragma once
/**
* @brief double precision SIMD oriented Fast Mersenne Twister(dSFMT)
* pseudorandom number generator based on IEEE 754 format.
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2007, 2008 Mutsuo Saito, Makoto Matsumoto and
* Hiroshima University. All rights reserved.
* Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto,
* Hiroshima University and The University of Tokyo.
* All rights reserved.
*
* The new BSD License is applied to this software.
* see LICENSE.txt
*
* @note We assume that your system has inttypes.h. If your system
* doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
* and you have to define PRIu64 and PRIx64 in this file as follows:
* @verbatim
typedef unsigned int uint32_t
typedef unsigned long long uint64_t
#define PRIu64 "llu"
#define PRIx64 "llx"
@endverbatim
* uint32_t must be exactly 32-bit unsigned integer type (no more, no
* less), and uint64_t must be exactly 64-bit unsigned integer type.
* PRIu64 and PRIx64 are used for printf function to print 64-bit
* unsigned int and 64-bit unsigned int in hexadecimal format.
*/
#ifndef DSFMT_H
#define DSFMT_H
#if defined(__cplusplus)
extern "C" {
#endif
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#define DSFMT_MEXP 19937
/*-----------------
BASIC DEFINITIONS
-----------------*/
/* Mersenne Exponent. The period of the sequence
* is a multiple of 2^DSFMT_MEXP-1.
* #define DSFMT_MEXP 19937 */
/** DSFMT generator has an internal state array of 128-bit integers,
* and N is its size. */
#define DSFMT_N ((DSFMT_MEXP - 128) / 104 + 1)
/** N32 is the size of internal state array when regarded as an array
* of 32-bit integers.*/
#define DSFMT_N32 (DSFMT_N * 4)
/** N64 is the size of internal state array when regarded as an array
* of 64-bit integers.*/
#define DSFMT_N64 (DSFMT_N * 2)
#if !defined(DSFMT_BIG_ENDIAN)
# if defined(__BYTE_ORDER) && defined(__BIG_ENDIAN)
# if __BYTE_ORDER == __BIG_ENDIAN
# define DSFMT_BIG_ENDIAN 1
# endif
# elif defined(_BYTE_ORDER) && defined(_BIG_ENDIAN)
# if _BYTE_ORDER == _BIG_ENDIAN
# define DSFMT_BIG_ENDIAN 1
# endif
# elif defined(__BYTE_ORDER__) && defined(__BIG_ENDIAN__)
# if __BYTE_ORDER__ == __BIG_ENDIAN__
# define DSFMT_BIG_ENDIAN 1
# endif
# elif defined(BYTE_ORDER) && defined(BIG_ENDIAN)
# if BYTE_ORDER == BIG_ENDIAN
# define DSFMT_BIG_ENDIAN 1
# endif
# elif defined(__BIG_ENDIAN) || defined(_BIG_ENDIAN) \
|| defined(__BIG_ENDIAN__) || defined(BIG_ENDIAN)
# define DSFMT_BIG_ENDIAN 1
# endif
#endif
#if defined(DSFMT_BIG_ENDIAN) && defined(__amd64)
# undef DSFMT_BIG_ENDIAN
#endif
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
# include <inttypes.h>
#elif defined(_MSC_VER) || defined(__BORLANDC__)
# if !defined(DSFMT_UINT32_DEFINED) && !defined(SFMT_UINT32_DEFINED)
typedef unsigned int uint32_t;
typedef unsigned __int64 uint64_t;
# ifndef UINT64_C
# define UINT64_C(v) (v ## ui64)
# endif
# define DSFMT_UINT32_DEFINED
# if !defined(inline) && !defined(__cplusplus)
# define inline __inline
# endif
# endif
#else
# include <inttypes.h>
# if !defined(inline) && !defined(__cplusplus)
# if defined(__GNUC__)
# define inline __inline__
# else
# define inline
# endif
# endif
#endif
#ifndef PRIu64
# if defined(_MSC_VER) || defined(__BORLANDC__)
# define PRIu64 "I64u"
# define PRIx64 "I64x"
# else
# define PRIu64 "llu"
# define PRIx64 "llx"
# endif
#endif
#ifndef UINT64_C
# define UINT64_C(v) (v ## ULL)
#endif
/*----------------------
the parameters of DSFMT
following definitions are in dSFMT-paramsXXXX.h file.
----------------------*/
/** the pick up position of the array.
#define DSFMT_POS1 122
*/
/** the parameter of shift left as four 32-bit registers.
#define DSFMT_SL1 18
*/
/** the parameter of shift right as four 32-bit registers.
#define DSFMT_SR1 12
*/
/** A bitmask, used in the recursion. These parameters are introduced
* to break symmetry of SIMD.
#define DSFMT_MSK1 (uint64_t)0xdfffffefULL
#define DSFMT_MSK2 (uint64_t)0xddfecb7fULL
*/
/** These definitions are part of a 128-bit period certification vector.
#define DSFMT_PCV1 UINT64_C(0x00000001)
#define DSFMT_PCV2 UINT64_C(0x00000000)
*/
#define DSFMT_LOW_MASK UINT64_C(0x000FFFFFFFFFFFFF)
#define DSFMT_HIGH_CONST UINT64_C(0x3FF0000000000000)
#define DSFMT_SR 12
/* for sse2 */
#if defined(HAVE_SSE2)
#define SSE2_SHUFF 0x1b
#elif defined(HAVE_ALTIVEC)
#if defined(__APPLE__) /* For OSX */
#define ALTI_SR (vector unsigned char)(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)
#define ALTI_SR_PERM \
(vector unsigned char)(15,0,1,2,3,4,5,6,15,8,9,10,11,12,13,14)
#define ALTI_SR_MSK \
(vector unsigned int)(0x000fffffU,0xffffffffU,0x000fffffU,0xffffffffU)
#define ALTI_PERM \
(vector unsigned char)(12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3)
#else
#define ALTI_SR {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
#define ALTI_SR_PERM {15,0,1,2,3,4,5,6,15,8,9,10,11,12,13,14}
#define ALTI_SR_MSK {0x000fffffU,0xffffffffU,0x000fffffU,0xffffffffU}
#define ALTI_PERM {12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3}
#endif
#endif
/* #define DSFMT_N 191 */
/* #define DSFMT_MAXDEGREE 19992 */
#define DSFMT_POS1 117
#define DSFMT_SL1 19
#define DSFMT_MSK1 UINT64_C(0x000ffafffffffb3f)
#define DSFMT_MSK2 UINT64_C(0x000ffdfffc90fffd)
#define DSFMT_MSK32_1 0x000ffaffU
#define DSFMT_MSK32_2 0xfffffb3fU
#define DSFMT_MSK32_3 0x000ffdffU
#define DSFMT_MSK32_4 0xfc90fffdU
#define DSFMT_FIX1 UINT64_C(0x90014964b32f4329)
#define DSFMT_FIX2 UINT64_C(0x3b8d12ac548a7c7a)
#define DSFMT_PCV1 UINT64_C(0x3d84e1ac0dc82880)
#define DSFMT_PCV2 UINT64_C(0x0000000000000001)
#define DSFMT_IDSTR "dSFMT2-19937:117-19:ffafffffffb3f-ffdfffc90fffd"
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned char)(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
#define ALTI_SL1_PERM \
(vector unsigned char)(2,3,4,5,6,7,30,30,10,11,12,13,14,15,0,1)
#define ALTI_SL1_MSK \
(vector unsigned int)(0xffffffffU,0xfff80000U,0xffffffffU,0xfff80000U)
#define ALTI_MSK (vector unsigned int)(DSFMT_MSK32_1, \
DSFMT_MSK32_2, DSFMT_MSK32_3, DSFMT_MSK32_4)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
#define ALTI_SL1_PERM \
{2,3,4,5,6,7,30,30,10,11,12,13,14,15,0,1}
#define ALTI_SL1_MSK \
{0xffffffffU,0xfff80000U,0xffffffffU,0xfff80000U}
#define ALTI_MSK \
{DSFMT_MSK32_1, DSFMT_MSK32_2, DSFMT_MSK32_3, DSFMT_MSK32_4}
#endif
/*------------------------------------------
128-bit SIMD like data type for standard C
------------------------------------------*/
#if defined(HAVE_ALTIVEC)
# if !defined(__APPLE__)
# include <altivec.h>
# endif
/** 128-bit data structure */
union W128_T {
vector unsigned int s;
uint64_t u[2];
uint32_t u32[4];
double d[2];
};
#elif defined(HAVE_SSE2)
# include <emmintrin.h>
/** 128-bit data structure */
union W128_T {
__m128i si;
__m128d sd;
uint64_t u[2];
uint32_t u32[4];
double d[2];
};
#else /* standard C */
/** 128-bit data structure */
union W128_T {
uint64_t u[2];
uint32_t u32[4];
double d[2];
};
#endif
/** 128-bit data type */
typedef union W128_T w128_t;
/** the 128-bit internal state array */
struct DSFMT_T {
w128_t status[DSFMT_N + 1];
int idx;
};
typedef struct DSFMT_T dsfmt_t;
/**
* @file dSFMT-common.h
*/
#if defined(HAVE_SSE2)
# include <emmintrin.h>
union X128I_T {
uint64_t u[2];
__m128i i128;
};
union X128D_T {
double d[2];
__m128d d128;
};
/** mask data for sse2 */
static const union X128I_T sse2_param_mask = {{DSFMT_MSK1, DSFMT_MSK2}};
#endif
#if defined(HAVE_ALTIVEC)
inline static void do_recursion(w128_t *r, w128_t *a, w128_t * b,
w128_t *lung) {
const vector unsigned char sl1 = ALTI_SL1;
const vector unsigned char sl1_perm = ALTI_SL1_PERM;
const vector unsigned int sl1_msk = ALTI_SL1_MSK;
const vector unsigned char sr1 = ALTI_SR;
const vector unsigned char sr1_perm = ALTI_SR_PERM;
const vector unsigned int sr1_msk = ALTI_SR_MSK;
const vector unsigned char perm = ALTI_PERM;
const vector unsigned int msk1 = ALTI_MSK;
vector unsigned int w, x, y, z;
z = a->s;
w = lung->s;
x = vec_perm(w, (vector unsigned int)perm, perm);
y = vec_perm(z, (vector unsigned int)sl1_perm, sl1_perm);
y = vec_sll(y, sl1);
y = vec_and(y, sl1_msk);
w = vec_xor(x, b->s);
w = vec_xor(w, y);
x = vec_perm(w, (vector unsigned int)sr1_perm, sr1_perm);
x = vec_srl(x, sr1);
x = vec_and(x, sr1_msk);
y = vec_and(w, msk1);
z = vec_xor(z, y);
r->s = vec_xor(z, x);
lung->s = w;
}
#elif defined(HAVE_SSE2)
/**
* This function represents the recursion formula.
* @param r output 128-bit
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param d a 128-bit part of the internal state array (I/O)
*/
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *u) {
__m128i v, w, x, y, z;
x = a->si;
z = _mm_slli_epi64(x, DSFMT_SL1);
y = _mm_shuffle_epi32(u->si, SSE2_SHUFF);
z = _mm_xor_si128(z, b->si);
y = _mm_xor_si128(y, z);
v = _mm_srli_epi64(y, DSFMT_SR);
w = _mm_and_si128(y, sse2_param_mask.i128);
v = _mm_xor_si128(v, x);
v = _mm_xor_si128(v, w);
r->si = v;
u->si = y;
}
#else
/**
* This function represents the recursion formula.
* @param r output 128-bit
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param lung a 128-bit part of the internal state array (I/O)
*/
inline static void do_recursion(w128_t *r, w128_t *a, w128_t * b,
w128_t *lung) {
uint64_t t0, t1, L0, L1;
t0 = a->u[0];
t1 = a->u[1];
L0 = lung->u[0];
L1 = lung->u[1];
lung->u[0] = (t0 << DSFMT_SL1) ^ (L1 >> 32) ^ (L1 << 32) ^ b->u[0];
lung->u[1] = (t1 << DSFMT_SL1) ^ (L0 >> 32) ^ (L0 << 32) ^ b->u[1];
r->u[0] = (lung->u[0] >> DSFMT_SR) ^ (lung->u[0] & DSFMT_MSK1) ^ t0;
r->u[1] = (lung->u[1] >> DSFMT_SR) ^ (lung->u[1] & DSFMT_MSK2) ^ t1;
}
#endif
/** dsfmt mexp for check */
extern const int dsfmt_global_mexp;
void dsfmt_gen_rand_all(dsfmt_t *dsfmt);
void dsfmt_chk_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed, int mexp);
#if defined(__GNUC__)
# define DSFMT_PRE_INLINE inline static
# define DSFMT_PST_INLINE __attribute__((always_inline))
#elif defined(_MSC_VER) && _MSC_VER >= 1200
# define DSFMT_PRE_INLINE __forceinline static
# define DSFMT_PST_INLINE
#else
# define DSFMT_PRE_INLINE inline static
# define DSFMT_PST_INLINE
#endif
DSFMT_PRE_INLINE uint32_t dsfmt_genrand_uint32(dsfmt_t *dsfmt) DSFMT_PST_INLINE;
DSFMT_PRE_INLINE double dsfmt_genrand_close1_open2(dsfmt_t *dsfmt)
DSFMT_PST_INLINE;
DSFMT_PRE_INLINE double dsfmt_genrand_close_open(dsfmt_t *dsfmt)
DSFMT_PST_INLINE;
DSFMT_PRE_INLINE double dsfmt_genrand_open_close(dsfmt_t *dsfmt)
DSFMT_PST_INLINE;
DSFMT_PRE_INLINE double dsfmt_genrand_open_open(dsfmt_t *dsfmt)
DSFMT_PST_INLINE;
DSFMT_PRE_INLINE void dsfmt_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed)
DSFMT_PST_INLINE;
/**
* This function generates and returns unsigned 32-bit integer.
* This is slower than SFMT, only for convenience usage.
* dsfmt_init_gen_rand() or dsfmt_init_by_array() must be called
* before this function.
* @param dsfmt dsfmt internal state date
* @return double precision floating point pseudorandom number
*/
inline static uint32_t dsfmt_genrand_uint32(dsfmt_t *dsfmt) {
uint32_t r;
uint64_t *psfmt64 = &dsfmt->status[0].u[0];
if (dsfmt->idx >= DSFMT_N64) {
dsfmt_gen_rand_all(dsfmt);
dsfmt->idx = 0;
}
r = psfmt64[dsfmt->idx++] & 0xffffffffU;
return r;
}
/**
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range [1, 2). This is
* the primitive and faster than generating numbers in other ranges.
* dsfmt_init_gen_rand() or dsfmt_init_by_array() must be called
* before this function.
* @param dsfmt dsfmt internal state date
* @return double precision floating point pseudorandom number
*/
inline static double dsfmt_genrand_close1_open2(dsfmt_t *dsfmt) {
double r;
double *psfmt64 = &dsfmt->status[0].d[0];
if (dsfmt->idx >= DSFMT_N64) {
dsfmt_gen_rand_all(dsfmt);
dsfmt->idx = 0;
}
r = psfmt64[dsfmt->idx++];
return r;
}
/**
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range [0, 1).
* dsfmt_init_gen_rand() or dsfmt_init_by_array() must be called
* before this function.
* @param dsfmt dsfmt internal state date
* @return double precision floating point pseudorandom number
*/
inline static double dsfmt_genrand_close_open(dsfmt_t *dsfmt) {
return dsfmt_genrand_close1_open2(dsfmt) - 1.0;
}
/**
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range (0, 1].
* dsfmt_init_gen_rand() or dsfmt_init_by_array() must be called
* before this function.
* @param dsfmt dsfmt internal state date
* @return double precision floating point pseudorandom number
*/
inline static double dsfmt_genrand_open_close(dsfmt_t *dsfmt) {
return 2.0 - dsfmt_genrand_close1_open2(dsfmt);
}
/**
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range (0, 1).
* dsfmt_init_gen_rand() or dsfmt_init_by_array() must be called
* before this function.
* @param dsfmt dsfmt internal state date
* @return double precision floating point pseudorandom number
*/
inline static double dsfmt_genrand_open_open(dsfmt_t *dsfmt) {
double *dsfmt64 = &dsfmt->status[0].d[0];
union {
double d;
uint64_t u;
} r;
if (dsfmt->idx >= DSFMT_N64) {
dsfmt_gen_rand_all(dsfmt);
dsfmt->idx = 0;
}
r.d = dsfmt64[dsfmt->idx++];
r.u |= 1;
return r.d - 1.0;
}
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
* @param dsfmt dsfmt state vector.
* @param seed a 32-bit integer used as the seed.
*/
inline static void dsfmt_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed) {
dsfmt_chk_init_gen_rand(dsfmt, seed, DSFMT_MEXP);
}
/* @file dSFMT.c */
/** dsfmt mexp for check */
static const int dsfmt_mexp = DSFMT_MEXP;
/*----------------
STATIC FUNCTIONS
----------------*/
inline static uint32_t ini_func1(uint32_t x);
inline static uint32_t ini_func2(uint32_t x);
inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static int idxof(int i);
static void initial_mask(dsfmt_t *dsfmt);
static void period_certification(dsfmt_t *dsfmt);
#if defined(HAVE_SSE2)
/** 1 in 64bit for sse2 */
static const union X128I_T sse2_int_one = {{1, 1}};
/** 2.0 double for sse2 */
static const union X128D_T sse2_double_two = {{2.0, 2.0}};
/** -1.0 double for sse2 */
static const union X128D_T sse2_double_m_one = {{-1.0, -1.0}};
#endif
/**
* This function simulate a 32-bit array index overlapped to 64-bit
* array of LITTLE ENDIAN in BIG ENDIAN machine.
*/
#if defined(DSFMT_BIG_ENDIAN)
inline static int idxof(int i) {
return i ^ 1;
}
#else
inline static int idxof(int i) {
return i;
}
#endif
#if defined(HAVE_SSE2)
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range [0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_c0o1(w128_t *w) {
w->sd = _mm_add_pd(w->sd, sse2_double_m_one.d128);
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1].
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0c1(w128_t *w) {
w->sd = _mm_sub_pd(sse2_double_two.d128, w->sd);
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0o1(w128_t *w) {
w->si = _mm_or_si128(w->si, sse2_int_one.i128);
w->sd = _mm_add_pd(w->sd, sse2_double_m_one.d128);
}
#else /* standard C and altivec */
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range [0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_c0o1(w128_t *w) {
w->d[0] -= 1.0;
w->d[1] -= 1.0;
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1].
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0c1(w128_t *w) {
w->d[0] = 2.0 - w->d[0];
w->d[1] = 2.0 - w->d[1];
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0o1(w128_t *w) {
w->u[0] |= 1;
w->u[1] |= 1;
w->d[0] -= 1.0;
w->d[1] -= 1.0;
}
#endif
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
convert_c0o1(&array[i - DSFMT_N]);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
convert_c0o1(&array[i - DSFMT_N]);
}
for (i = size - DSFMT_N; i < size; i++) {
convert_c0o1(&array[i]);
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
convert_o0o1(&array[i - DSFMT_N]);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
convert_o0o1(&array[i - DSFMT_N]);
}
for (i = size - DSFMT_N; i < size; i++) {
convert_o0o1(&array[i]);
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
convert_o0c1(&array[i - DSFMT_N]);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
convert_o0c1(&array[i - DSFMT_N]);
}
for (i = size - DSFMT_N; i < size; i++) {
convert_o0c1(&array[i]);
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t ini_func1(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t ini_func2(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
/**
* This function initializes the internal state array to fit the IEEE
* 754 format.
* @param dsfmt dsfmt state vector.
*/
static void initial_mask(dsfmt_t *dsfmt) {
int i;
uint64_t *psfmt;
psfmt = &dsfmt->status[0].u[0];
for (i = 0; i < DSFMT_N * 2; i++) {
psfmt[i] = (psfmt[i] & DSFMT_LOW_MASK) | DSFMT_HIGH_CONST;
}
}
/**
* This function certificate the period of 2^{SFMT_MEXP}-1.
* @param dsfmt dsfmt state vector.
*/
static void period_certification(dsfmt_t *dsfmt) {
uint64_t pcv[2] = {DSFMT_PCV1, DSFMT_PCV2};
uint64_t tmp[2];
uint64_t inner;
int i;
#if (DSFMT_PCV2 & 1) != 1
int j;
uint64_t work;
#endif
tmp[0] = (dsfmt->status[DSFMT_N].u[0] ^ DSFMT_FIX1);
tmp[1] = (dsfmt->status[DSFMT_N].u[1] ^ DSFMT_FIX2);
inner = tmp[0] & pcv[0];
inner ^= tmp[1] & pcv[1];
for (i = 32; i > 0; i >>= 1) {
inner ^= inner >> i;
}
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
#if (DSFMT_PCV2 & 1) == 1
dsfmt->status[DSFMT_N].u[1] ^= 1;
#else
for (i = 1; i >= 0; i--) {
work = 1;
for (j = 0; j < 64; j++) {
if ((work & pcv[i]) != 0) {
dsfmt->status[DSFMT_N].u[i] ^= work;
return;
}
work = work << 1;
}
}
#endif
return;
}
/*----------------
PUBLIC FUNCTIONS
----------------*/
/**
* This function fills the internal state array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
*/
void dsfmt_gen_rand_all(dsfmt_t *dsfmt) {
int i;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&dsfmt->status[0], &dsfmt->status[0],
&dsfmt->status[DSFMT_POS1], &lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&dsfmt->status[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&dsfmt->status[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1 - DSFMT_N], &lung);
}
dsfmt->status[DSFMT_N] = lung;
}
#if defined(__INTEL_COMPILER)
# pragma warning(disable:981)
#endif
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
* @param dsfmt dsfmt state vector.
* @param seed a 32-bit integer used as the seed.
* @param mexp caller's mersenne expornent
*/
void dsfmt_chk_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed, int mexp) {
int i;
uint32_t *psfmt;
/* make sure caller program is compiled with the same MEXP */
if (mexp != dsfmt_mexp) {
fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n");
exit(1);
}
psfmt = &dsfmt->status[0].u32[0];
psfmt[idxof(0)] = seed;
for (i = 1; i < (DSFMT_N + 1) * 4; i++) {
psfmt[idxof(i)] = 1812433253UL
* (psfmt[idxof(i - 1)] ^ (psfmt[idxof(i - 1)] >> 30)) + i;
}
initial_mask(dsfmt);
period_certification(dsfmt);
dsfmt->idx = DSFMT_N64;
}
#if defined(__INTEL_COMPILER)
# pragma warning(default:981)
#endif
/* Global PRNG */
dsfmt_t dsfmt_global_data;
static inline void dsfmt_seed(uint32_t seed){
dsfmt_init_gen_rand(&dsfmt_global_data, seed);
}
static inline double dsfmt_genrand(void){
return dsfmt_genrand_close_open(&dsfmt_global_data);
}
#if defined(__cplusplus)
}
#endif
#endif /* DSFMT_H */