-
Notifications
You must be signed in to change notification settings - Fork 0
/
hpd.py
59 lines (54 loc) · 1.84 KB
/
hpd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from __future__ import division
import numpy as np
import scipy.stats.kde as kde
def hpd_grid(sample, alpha=0.05, roundto=2):
"""Calculate highest posterior density (HPD) of array for given alpha.
The HPD is the minimum width Bayesian credible interval (BCI).
The function works for multimodal distributions, returning more than one mode
Parameters
----------
sample : Numpy array or python list
An array containing MCMC samples
alpha : float
Desired probability of type I error (defaults to 0.05)
roundto: integer
Number of digits after the decimal point for the results
Returns
----------
hpd: array with the lower
"""
sample = np.asarray(sample)
sample = sample[~np.isnan(sample)]
# get upper and lower bounds
l = np.min(sample)
u = np.max(sample)
density = kde.gaussian_kde(sample)
x = np.linspace(l, u, 2000)
y = density.evaluate(x)
#y = density.evaluate(x, l, u) waitting for PR to be accepted
xy_zipped = zip(x, y/np.sum(y))
xy = sorted(xy_zipped, key=lambda x: x[1], reverse=True)
xy_cum_sum = 0
hdv = []
for val in xy:
xy_cum_sum += val[1]
hdv.append(val[0])
if xy_cum_sum >= (1-alpha):
break
hdv.sort()
diff = (u-l)/20 # differences of 5%
hpd = []
hpd.append(round(min(hdv), roundto))
for i in range(1, len(hdv)):
if hdv[i]-hdv[i-1] >= diff:
hpd.append(round(hdv[i-1], roundto))
hpd.append(round(hdv[i], roundto))
hpd.append(round(max(hdv), roundto))
ite = iter(hpd)
hpd = list(zip(ite, ite))
modes = []
for value in hpd:
x_hpd = x[(x > value[0]) & (x < value[1])]
y_hpd = y[(x > value[0]) & (x < value[1])]
modes.append(round(x_hpd[np.argmax(y_hpd)], roundto))
return hpd, x, y, modes