-
Notifications
You must be signed in to change notification settings - Fork 16
/
EuropeanOptionSolver.py
51 lines (44 loc) · 1.97 KB
/
EuropeanOptionSolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import scipy.stats as stats
class EuropeanOption:
@staticmethod
def european_put_value(tau, s0, r, q, vol, strike):
"""put option"""
if tau == 0:
return max(0, strike - s0)
d1 = EuropeanOption.d1(tau, s0, r, q, vol, strike)
d2 = EuropeanOption.d2(tau, s0, r, q, vol, strike)
return strike * np.exp(-r * tau) * stats.norm.cdf(-d2) - s0 * np.exp(-q * tau) * stats.norm.cdf(-d1)
@staticmethod
def european_call_value(tau, s0, r, q, vol, strike):
"""put option"""
if tau == 0:
return max(0, s0 - strike)
d1 = EuropeanOption.d1(tau, s0, r, q, vol, strike)
d2 = EuropeanOption.d2(tau, s0, r, q, vol, strike)
return s0 * np.exp(-q * tau) * stats.norm.cdf(d1) - strike * np.exp(-r * tau) * stats.norm.cdf(d2)
@staticmethod
def european_option_theta(tau, s0, r, q, vol, strike):
"""put option theta"""
r = max(r, 1e-10)
tau = max(tau, 1e-10) # set tau negative
d1 = EuropeanOption.d1(tau, s0, r, q, vol, strike)
d2 = EuropeanOption.d2(tau, s0, r, q, vol, strike)
return r*strike * np.exp(-r * tau) * stats.norm.cdf(-d2) - q * s0 * np.exp(-q * tau)*stats.norm.cdf(-d1) \
- vol * s0 * np.exp(-q * tau) * stats.norm.pdf(d1)/(2 * np.sqrt(tau))
@staticmethod
def d1(tau, s0, r, q, vol, strike):
return np.log(s0 * np.exp((r-q)*tau)/strike)/(vol * np.sqrt(tau)) + 0.5*vol * np.sqrt(tau)
@staticmethod
def d2(tau, s0, r, q, vol, strike):
return EuropeanOption.d1(tau, s0, r, q, vol, strike) - vol * np.sqrt(tau)
if __name__ == '__main__':
r = 0.04 # risk free
q = 0.04 # dividend yield
K = 100 # strike
S0 = 80 # underlying spot
sigma = 0.2 # volatility
T = 3.0 # maturity
put = EuropeanOption.european_option_value(T, S0, r, q, sigma, K)
call = EuropeanOption.european_option_value(T, K, q, r, sigma , S0)
print("call = ", call, ", put = ", put)