-
Notifications
You must be signed in to change notification settings - Fork 16
/
FastAmericanOptionSolverBase.py
447 lines (378 loc) · 15.8 KB
/
FastAmericanOptionSolverBase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import numpy as np
import scipy.stats as stats
import ChebyshevInterpolation as intrp
import EuropeanOptionSolver as europ
import QDplusAmericanOptionSolver as qd
import numpy.linalg as alg
import numpy.polynomial.legendre as legendre
import matplotlib.pyplot as plt
from abc import ABC, abstractmethod
class FastAmericanOptionSolver(ABC):
def __init__(self, riskfree, dividend, volatility, strike, maturity, option_type):
self.r = riskfree
self.q = dividend
self.sigma = volatility
self.K = strike
self.T = maturity
self.collocation_num = 12
self.quadrature_num = 24
self.integration_num = 2 * self.quadrature_num
self.max_iters = 200
self.iter_tol = 1e-5
self.shared_B0 = []
self.shared_B = []
self.shared_B_old = []
self.shared_tau = []
self.tau_max = self.T
self.tau_min = 0
self.european_price = 0
self.option_type = option_type
# points and weights for Guassian integration
self.y = [-0.90618, -0.538469, 0, 0.538469, 0.90618]
self.w = [0.236927, 0.478629, 0.568889, 0.478629, 0.236927]
self.shared_Bu = [None] * len(self.y)
self.shared_u = [None] * len(self.y)
self.tau_cache = -1
self.integration_num_cache = -1
self.iter_records = []
self.error = 1000000
self.num_iters = 0
# Debug switch
self.DEBUG = True
self.use_derivative = False
def solve(self, t, s0):
if self.q == 0 and self.option_type == qd.OptionType.Call:
# for american call with no dividends, return european call price
self.european_price = europ.EuropeanOption.european_call_value(self.T- t, s0, self.r, self.q, self.sigma, self.K)
return self.european_price
tau = self.T - t
self.set_collocation_points()
####check collocation points are done###
self.debug("step 1. checking collocation points ...")
self.debug("collocation point = {0}".format(self.shared_tau))
########################################
####check numerical integration are correct###
self.debug("step 3. checking numerical integration ...")
self.test_numerical_integration()
########################################
self.compute_exercise_boundary()
##### check exercise boundary ###########
self.debug("step 6. checking exercise boundary ...")
self.debug("exercise boundary = {0}".format(self.shared_B))
self.debug("match condition err = {0}".format(self.check_value_match_condition2()))
########################################
v = self.american_value_with_known_boundary(tau, s0, self.r, self.q, self.sigma, self.K)
return v
def test_numerical_integration(self):
if not self.DEBUG:
return
self.set_initial_guess()
tau = 3.0
s0 = 2
analy_res = s0 * 0.5 * (np.exp(tau * tau) - 1)
num_res = self.quadrature_sum(self.test_integrand, tau, s0, self.quadrature_num)
self.debug("analytical sol = {0}, numerical sol = {1}, err = {2}".format(analy_res, num_res, abs(analy_res - num_res)))
@staticmethod
def test_integrand(tau, S, u, Bu):
return S * u * np.exp(u * u)
def american_value_with_known_boundary(self, tau, s0, r, q, sigma, K):
if self.option_type == qd.OptionType.Put:
v = europ.EuropeanOption.european_put_value(tau, s0, r, q, sigma, K)
else:
v = europ.EuropeanOption.european_call_value(tau, s0, r, q, sigma, K)
self.european_price = v # save european price
# v1 = self.quadrature_sum(self.v_integrand_1, tau, s0, self.integration_num)
# v2 = self.quadrature_sum(self.v_integrand_2, tau, s0, self.integration_num)
v12 = self.quadrature_sum(self.v_integrand_12, tau, s0, self.integration_num)
return v + v12
def compute_exercise_boundary(self):
self.set_initial_guess()
##################################
self.debug("step 4. checking QD+ alogrithm ...")
self.debug("B guess = {0}".format(self.shared_B))
self.debug("tau = {0}".format(self.shared_tau))
##################################
##################################
self.debug("step 5. starting iteration ...")
##################################
iter_count = 0
iter_err = 1
while iter_err > self.iter_tol and iter_count < self.max_iters:
iter_count += 1
B_old = self.shared_B.copy()
self.shared_B = self.iterate_once(self.shared_tau, B_old)
self.shared_B_old = B_old
iter_err = self.norm1_error(B_old, self.shared_B)
self.debug(" iter = {0}, err = {1}".format(iter_count, self.norm1_error(B_old, self.shared_B)))
#self.debug("match condition err1 = {0}".format(self.check_value_match_condition1()))
self.debug("match condition err2 = {0}".format(self.check_value_match_condition2()))
#self.debug("match condition err3 = {0}".format(self.check_value_match_condition3()))
self.iter_records.append((iter_count, iter_err))
self.error = iter_err
self.num_iters = iter_count
def iterate_once(self, tau, B):
"""the for-loop can be parallelized"""
B_new = []
for i in range(len(tau)):
B_i = self.iterate_once_foreach_tau(tau[i], B[i])
B_new.append(B_i)
return B_new
def iterate_once_foreach_tau(self, tau_i, B_i):
eta = 0.5
f_and_fprime = self.compute_f_and_fprime(tau_i, B_i)
f = f_and_fprime[0]
# if len(self.shared_B_old) != 0:
# num_fprime = self.compute_fprime_numerical(tau_i, B_i, self.shared_B_old[i])
# else:
# num_fprime = f_and_fprime[1]
####
if self.use_derivative:
fprime = f_and_fprime[1]
else:
fprime = 0.0
###
# print("tau_i = ", tau_i, "analy fprime = ", f_and_fprime[1], "numr fprime = ", num_fprime)
if tau_i == 0:
B_i = self.B_at_zero()
else:
B_i += eta * (B_i - f) / (fprime - 1)
return B_i
def compute_integration_terms(self, tau, num_points):
"""compute u between 0, tau_i"""
if tau == self.tau_cache and num_points == self.integration_num_cache:
return
else:
self.tau_cache = tau
self.integration_num_cache = num_points
points_weights = legendre.leggauss(num_points)
self.y = points_weights[0]
self.w = points_weights[1]
self.shared_Bu = [None] * len(self.y)
self.shared_u = [None] * len(self.y)
X = self.B_at_zero()
# this transformation significantly reduces the number of iterations
H = np.square(np.log(np.array(self.shared_B) / X))
cheby_interp = intrp.ChebyshevInterpolation(H, self.to_cheby_point, self.tau_min, self.tau_max)
self.shared_u = tau - tau * np.square(1 + self.y)/4.0
Bu_intrp = cheby_interp.value(self.shared_u)
# note sqrt(H) can be positive or negative depending on B > X or B < X
if self.option_type == qd.OptionType.Put:
Bu_intrp = np.exp(-np.sqrt(np.maximum(0.0, Bu_intrp))) * X
else:
Bu_intrp = np.exp(np.sqrt(np.maximum(0.0, Bu_intrp))) * X
self.shared_Bu = Bu_intrp
def v_integrand_1(self, tau, S, u, Bu):
# every input is scalar
if self.option_type == qd.OptionType.Put:
return self.r * self.K * np.exp(-self.r * (tau - u)) * self.CDF_neg_dminus(tau-u, S/Bu)
else:
return self.q * S * np.exp(-self.q * (tau - u)) * self.CDF_pos_dplus(tau-u, S/Bu)
def v_integrand_2(self, tau, S, u, Bu):
# every input is scalar
if self.option_type == qd.OptionType.Put:
return self.q * S * np.exp(-self.q * (tau - u)) * self.CDF_neg_dplus(tau-u, S/Bu)
else:
return self.r * self.K * np.exp(-self.r * (tau - u)) * self.CDF_pos_dminus(tau - u, S / Bu)
def v_integrand_12(self, tau, S, u, Bu):
# every input is scalar
if self.option_type == qd.OptionType.Put:
return self.r * self.K * np.exp(-self.r * (tau - u)) * self.CDF_neg_dminus(tau - u, S / Bu) \
- self.q * S * np.exp(-self.q * (tau - u)) * self.CDF_neg_dplus(tau-u, S/Bu)
else:
ans = self.q * S * np.exp(-self.q * (tau - u)) * self.CDF_pos_dplus(tau - u, S / Bu) \
- self.r * self.K * np.exp(-self.r * (tau - u)) * self.CDF_pos_dminus(tau - u, S / Bu)
return ans
def set_collocation_points(self):
cheby_points = intrp.ChebyshevInterpolation.get_std_cheby_points(self.collocation_num)
self.shared_tau = self.to_orig_point(cheby_points, self.tau_min, self.tau_max)
def debug(self, message):
if self.DEBUG == True:
print(message)
print("")
def norm1_error(self, x1, x2):
x1 = np.array(x1)
x2 = np.array(x2)
return alg.norm(np.abs(x1 - x2))
def to_cheby_point(self, x, x_min, x_max):
# x in [x_min, x_max] is transformed to [-1, 1]
return np.sqrt(4 * (x - x_min) / (x_max - x_min)) - 1
def to_orig_point(self, c, x_min, x_max):
return np.square(c + 1) * (x_max - x_min) / 4 + x_min
def jac(self, a, b, x):
"""this function defines transformation jacobian for y = f(x): dy = jac * dx"""
return 0.5 * (b - a) * (1 + x)
def B_at_zero(self):
if self.option_type == qd.OptionType.Call:
if self.r <= self.q:
return self.K
else:
return self.r/self.q * self.K
else:
if self.r >= self.q:
return self.K
else:
return self.r/self.q * self.K
def set_initial_guess(self):
"""get initial guess for all tau_i using QD+ algorithm"""
qd_solver = qd.QDplus(self.r, self.q, self.sigma, self.K, self.option_type)
res = []
for tau_i in self.shared_tau:
res.append(qd_solver.compute_exercise_boundary(tau_i))
self.shared_B = res
self.shared_B0 = res.copy()
def compute_f_and_fprime(self, tau_i, B_i):
if tau_i == 0:
return [self.B_at_zero(), 1]
N = self.N_func(tau_i, B_i)
D = self.D_func(tau_i, B_i)
f = self.K * np.exp(-tau_i * (self.r - self.q)) * N / D
fprime = 1
if self.use_derivative:
Ndot = self.Nprime_func(tau_i, B_i)
Ddot = self.Dprime_func(tau_i, B_i)
fprime = self.K * np.exp(-tau_i * (self.r - self.q)) * (Ndot / D - Ddot * N / (D * D))
return [f, fprime]
def compute_fprime_numerical(self, tau_i, B_i, B_i_old):
if B_i == B_i_old:
return 0
up_res = self.compute_f_and_fprime(tau_i, B_i)
down_res = self.compute_f_and_fprime(tau_i, B_i_old)
f_up = up_res[0]
f_down = down_res[0]
return (f_up - f_down)/(B_i - B_i_old)
@abstractmethod
def N_func(self, tau, B):
pass
@abstractmethod
def D_func(self, tau, B):
pass
@abstractmethod
def Nprime_func(self, tau, Q):
pass
@abstractmethod
def Dprime_func(self, tau, Q):
pass
def dminus(self, tau, z):
return (np.log(z) + (self.r - self.q)*tau - 0.5 * self.sigma * self.sigma * tau)/(self.sigma * np.sqrt(tau))
def dplus(self, tau, z):
return (np.log(z) + (self.r - self.q)*tau + 0.5 * self.sigma * self.sigma * tau)/(self.sigma * np.sqrt(tau))
def CDF_neg_dminus(self, tau, z):
# phi(-d-)
if tau == 0 and z > 1:
return 0
elif tau == 0 and z <= 1:
return 1
else:
return stats.norm.cdf(-self.dminus(tau, z))
def CDF_pos_dminus(self, tau, z):
# phi(+d-)
if tau == 0 and z > 1:
return 1
elif tau == 0 and z <= 1:
return 0
else:
return stats.norm.cdf(self.dminus(tau, z))
def CDF_neg_dplus(self, tau, z):
# phi(-d+)
if tau == 0 and z > 1:
return 0
elif tau == 0 and z <= 1:
return 1
else:
return stats.norm.cdf(-self.dplus(tau, z))
def CDF_pos_dplus(self, tau, z):
# phi(+d+)
if tau == 0 and z > 1:
return 1
elif tau == 0 and z <= 1:
return 0
else:
return stats.norm.cdf(self.dplus(tau, z))
def PDF_dminus(self, tau, z):
if tau == 0:
return 0
else:
return stats.norm.pdf(self.dminus(tau, z))
def PDF_dplus(self, tau, z):
if tau == 0:
return 0
else:
return stats.norm.pdf(self.dplus(tau, z))
def PDF_neg_dminus(self, tau, z):
if tau == 0:
return 0
else:
return stats.norm.pdf(-self.dminus(tau, z))
def PDF_neg_dplus(self, tau, z):
if tau == 0:
return 0
else:
return stats.norm.pdf(-self.dplus(tau, z))
def quadrature_sum(self, integrand, tau, S, num_points):
# tau, S are scalar, u and Bu are vectors for integration
# u, Bu and y, w should have the same number of points
self.compute_integration_terms(tau, num_points)
u = self.shared_u
Bu = self.shared_Bu
assert len(u) == len(Bu) and len(u) == len(self.w)
if tau == 0:
return 0
ans = 0
for i in range(len(u)):
adding = integrand(tau, S, u[i], Bu[i]) * self.w[i] * self.jac(0, tau, self.y[i])
ans += adding
return ans
def check_value_match_condition1(self):
left = []
right = []
for tau_i, B_i in zip(self.shared_tau, self.shared_B):
if self.option_type == qd.OptionType.Put:
left.append(self.K - B_i)
else:
left.append(B_i - self.K)
right.append(self.american_value_with_known_boundary(tau_i, B_i, self.r, self.q, self.sigma, self.K))
return self.norm1_error(left, right)
def check_value_match_condition2(self):
left = []
right = []
for tau_i, B_i in zip(self.shared_tau, self.shared_B):
if tau_i == 0:
continue
N = self.N_func(tau_i, B_i)
D = self.D_func(tau_i, B_i)
left.append(N * self.K * np.exp(-self.r * tau_i))
right.append(D * B_i * np.exp(- self.q * tau_i))
#print("1. N = ", N, "D = ", D, "tau = ", tau_i, "B=", B_i, "left = ", left[-1], "right = ", right[-1], "diff = ", np.abs(left[-1]- right[-1]))
return self.norm1_error(left, right)
def check_value_match_condition3(self):
left = []
right = []
for tau_i, B_i in zip(self.shared_tau, self.shared_B):
f_and_fprime = self.compute_f_and_fprime(tau_i, B_i)
N = self.N_func(tau_i, B_i)
D = self.D_func(tau_i, B_i)
f_and_fprime[0] = self.K * np.exp(-tau_i * (self.r-self.q)) * N/D
right.append(f_and_fprime[0])
left.append(B_i)
#print("2. N = ", N, "D = ", D, "tau = ", tau_i, "B=", B_i, "left = ", left[-1], "right = ", right[-1], "diff = ", np.abs(left[-1]- right[-1]))
return self.norm1_error(left, right)
def check_f_with_B(self, B=np.linspace(50, 150, 30)):
if self.option_type == qd.OptionType.Call and self.q == 0:
return
tau = 0.2
fprime = []
f = []
for Bi in B:
res = self.compute_f_and_fprime(tau, Bi)
fprime.append(res[1])
f.append(res[0])
plt.subplot(1,2,1)
plt.plot(B, f, 'o-')
plt.xlabel("B")
plt.ylabel("f")
plt.subplot(1,2,2)
plt.plot(B, fprime, 'o-r')
plt.xlabel("B")
plt.ylabel("f prime")
plt.show()
exit()