-
Notifications
You must be signed in to change notification settings - Fork 16
/
testFprime.py
57 lines (48 loc) · 1.39 KB
/
testFprime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import FastAmericanOptionSolverB as solver
import matplotlib.pyplot as plt
from matplotlib import *
import matplotlib
r = 0.05 # risk free
q = 0.05 # dividend yield
K = 100 # strike
S = 100 # underlying spot
sigma = 0.2 # volatility
T = 1.5 # maturity
t = 0.0 # valuation date
Nt = 15
Nb = 50
mysolver = solver.FastAmericanOptionSolver(r, q, sigma, K, T)
mysolver.set_collocation_points()
mysolver.set_initial_guess()
Bspace = np.linspace(np.min(mysolver.shared_B), np.max(mysolver.shared_B), Nb)
tauspace = np.linspace(0.1,1.5,Nt)
plt.plot(mysolver.shared_tau, mysolver.shared_B, "o-")
plt.xlabel("tau [Y]")
plt.ylabel("Exercise boundary [$]")
plt.show()
norm = matplotlib.colors.Normalize(vmin=0,vmax=T)
# choose a colormap
c_m = matplotlib.cm.hot
# create a ScalarMappable and initialize a data structure
s_m = matplotlib.cm.ScalarMappable(cmap=c_m, norm=norm)
s_m.set_array([])
for tau in tauspace:
print("tau = ", tau)
B = Bspace
fprime = []
f = []
for Bi in Bspace:
res = mysolver.compute_f_and_fprime(tau, Bi)
fprime.append(res[1])
f.append(res[0])
plt.subplot(1, 2, 1)
plt.plot(B, f, '-', color=s_m.to_rgba(tau))
plt.xlabel("B")
plt.ylabel("f")
plt.subplot(1, 2, 2)
plt.plot(B, fprime, '-', color=s_m.to_rgba(tau))
plt.colorbar(s_m)
plt.xlabel("B")
plt.ylabel("f prime")
plt.show()