-
Notifications
You must be signed in to change notification settings - Fork 3
/
gan_tensorflow.py
136 lines (95 loc) · 4.01 KB
/
gan_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
X = tf.placeholder(tf.float32, shape=[None, 784], name='X-data')
with tf.name_scope('D_params') as theta_D:
D_W1 = tf.Variable(xavier_init([784, 128]), name='D_W1')
D_b1 = tf.Variable(tf.zeros(shape=[128]), name='D_b1')
D_W2 = tf.Variable(xavier_init([128, 1]), name='D_W2')
D_b2 = tf.Variable(tf.zeros(shape=[1]), name='D_b2')
theta_D = [D_W1, D_W2, D_b1, D_b2]
Z = tf.placeholder(tf.float32, shape=[None, 100], name='Z-noise')
with tf.name_scope('G_params') as theta_G:
G_W1 = tf.Variable(xavier_init([100, 128]), name='G_W1')
G_b1 = tf.Variable(tf.zeros(shape=[128]), name='G_b1')
G_W2 = tf.Variable(xavier_init([128, 784]), name='G_W2')
G_b2 = tf.Variable(tf.zeros(shape=[784]), name='G_b2')
theta_G = [G_W1, G_W2, G_b1, G_b2]
def sample_Z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
def generator(z):
with tf.name_scope('generator') as generator:
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1, name='G_h1')
G_log_prob = tf.matmul(G_h1, G_W2, name='G_matmul') + G_b2
G_prob = tf.nn.sigmoid(G_log_prob, name='G_prob')
return G_prob
def discriminator(x, name):
with tf.name_scope(name) as discriminator:
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1, name='D_relu')
D_logit = tf.matmul(D_h1, D_W2) + D_b2
D_prob = tf.nn.sigmoid(D_logit, name='D_prob')
return D_prob, D_logit
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
G_sample = generator(Z)
D_real, D_logit_real = discriminator(X, 'discriminator_real')
D_fake, D_logit_fake = discriminator(G_sample, 'discriminator_fake')
# D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake))
# G_loss = -tf.reduce_mean(tf.log(D_fake))
# Alternative losses:
# -------------------
with tf.name_scope('D_loss_fn') as d_loss:
D_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real)), name='D_loss_real')
D_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake)), name='D_loss_fake')
D_loss = D_loss_real + D_loss_fake
with tf.name_scope('G_loss_fn') as g_loss:
G_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)), name='G_loss')
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D, name='D_solver')
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G, name='G_solver')
mb_size = 128
Z_dim = 100
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'):
os.makedirs('out/')
tf.summary.scalar('hi', 1)
# merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('logdir', sess.graph)
i = 0
for it in range(10):
if it % 1000 == 0:
samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig)
X_mb, _ = mnist.train.next_batch(mb_size)
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)})
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(mb_size, Z_dim)})
if it % 1000 == 0:
print('Iter: {}'.format(it))
print('D loss: {:.4}'.format(D_loss_curr))
print('G_loss: {:.4}'.format(G_loss_curr))
print()
# sess.run([merged])