diff --git a/examples/algorithms/moo/age2_constrained.py b/examples/algorithms/moo/age2_constrained.py new file mode 100644 index 00000000..483c9be9 --- /dev/null +++ b/examples/algorithms/moo/age2_constrained.py @@ -0,0 +1,64 @@ +from pymoo.indicators.igd import IGD +from pymoo.util.ref_dirs import get_reference_directions +from pymoo.algorithms.moo.age2 import AGEMOEA2 +from pymoo.optimize import minimize + +from pymoo.problems.many import C1DTLZ1, DC1DTLZ1, DC1DTLZ3, DC2DTLZ1, DC2DTLZ3, DC3DTLZ1, DC3DTLZ3, C1DTLZ3, \ + C2DTLZ2, C3DTLZ1, C3DTLZ4 +import ray +import numpy as np + +benchmark_algorithms = [ + AGEMOEA2(), +] + +benchmark_problems = [ + C1DTLZ1, DC1DTLZ1, DC1DTLZ3, DC2DTLZ1, DC2DTLZ3, DC3DTLZ1, DC3DTLZ3, C1DTLZ3, C2DTLZ2, C3DTLZ1, C3DTLZ4 +] + + +def run_benchmark(problem_class, algorithm): + # Instantiate the problem + problem = problem_class() + + res = minimize( + problem, + algorithm, + pop_size=100, + verbose=True, + seed=1, + termination=('n_gen', 2000) + ) + + # Step 4: Generate the reference points + ref_dirs = get_reference_directions("uniform", problem.n_obj, n_points=528) + + # Obtain the true Pareto front (for synthetic problems) + pareto_front = problem.pareto_front(ref_dirs) + + # Calculate IGD + if res.F is None: + igd = np.Infinity + else: + igd = IGD(pareto_front)(res.F) + + result = { + "problem": problem, + "algorithm": algorithm, + "result": res, + "igd": igd + } + + return result + + +tasks = [] +for problem in benchmark_problems: + for algorithm in benchmark_algorithms: + tasks.append(ray.remote(run_benchmark).remote(problem, algorithm)) +result = ray.get(tasks) + +for res in result: + print(f"Algorithm = {res['algorithm'].__class__.__name__}, " + f"Problem = {res['problem'].__class__.__name__}, " + f"IGD = {res['igd']}") diff --git a/pymoo/algorithms/moo/age.py b/pymoo/algorithms/moo/age.py index f24b76e2..5a2776f6 100644 --- a/pymoo/algorithms/moo/age.py +++ b/pymoo/algorithms/moo/age.py @@ -167,7 +167,13 @@ def survival_score(self, front, ideal_point): p = self.compute_geometry(front, extreme, n) nn = np.linalg.norm(front, p, axis=1) - distances = self.pairwise_distances(front, p) / (nn[:, None]) + # Replace very small norms with 1 to prevent division by zero + nn[nn < 1e-8] = 1 + + distances = self.pairwise_distances(front, p) + distances[distances < 1e-8] = 1e-8 # Replace very small entries to prevent division by zero + + distances = distances / (nn[:, None]) neighbors = 2 remaining = np.arange(m) @@ -209,7 +215,7 @@ def compute_geometry(front, extreme, n): return p @staticmethod - @jit(fastmath=True) + #@jit(nopython=True, fastmath=True) def pairwise_distances(front, p): m = np.shape(front)[0] distances = np.zeros((m, m)) @@ -219,7 +225,7 @@ def pairwise_distances(front, p): return distances @staticmethod - @jit(fastmath=True) + @jit(nopython=True, fastmath=True) def minkowski_distances(A, B, p): m1 = np.shape(A)[0] m2 = np.shape(B)[0] @@ -254,7 +260,7 @@ def find_corner_solutions(front): return indexes -@jit(fastmath=True) +@jit(nopython=True, fastmath=True) def point_2_line_distance(P, A, B): d = np.zeros(P.shape[0]) diff --git a/pymoo/algorithms/moo/age2.py b/pymoo/algorithms/moo/age2.py index fc238cb4..09265d42 100644 --- a/pymoo/algorithms/moo/age2.py +++ b/pymoo/algorithms/moo/age2.py @@ -64,48 +64,78 @@ def __init__(self, self.tournament_type = 'comp_by_rank_and_crowding' -@jit(fastmath=True) +@jit(nopython=True, fastmath=True) def project_on_manifold(point, p): dist = sum(point[point > 0] ** p) ** (1/p) return np.multiply(point, 1 / dist) +import numpy as np + + def find_zero(point, n, precision): x = 1 - + epsilon = 1e-10 # Small constant for regularization past_value = x + max_float = np.finfo(np.float64).max # Maximum representable float value + log_max_float = np.log(max_float) # Logarithm of the maximum float + for i in range(0, 100): - # Original function + # Original function with regularization f = 0.0 for obj_index in range(0, n): if point[obj_index] > 0: - f += np.power(point[obj_index], x) + log_value = x * np.log(point[obj_index] + epsilon) + if log_value < log_max_float: + f += np.exp(log_value) + else: + return 1 # Handle overflow by returning a fallback value - f = np.log(f) + f = np.log(f) if f > 0 else 0 # Avoid log of non-positive numbers - # Derivative + # Derivative with regularization numerator = 0 denominator = 0 for obj_index in range(0, n): if point[obj_index] > 0: - numerator = numerator + np.power(point[obj_index], x) * np.log(point[obj_index]) - denominator = denominator + np.power(point[obj_index], x) - - if denominator == 0: - return 1 + log_value = x * np.log(point[obj_index] + epsilon) + if log_value < log_max_float: + power_value = np.exp(log_value) + log_term = np.log(point[obj_index] + epsilon) + + # Use logarithmic comparison to avoid overflow + if log_value + np.log(abs(log_term) + epsilon) < log_max_float: + result = power_value * log_term + numerator += result + denominator += power_value + else: + # Handle extreme cases by capping the result + numerator += max_float + denominator += power_value + else: + return 1 # Handle overflow by returning a fallback value + + if denominator == 0 or np.isnan(denominator) or np.isinf(denominator): + return 1 # Handle division by zero or NaN + + if np.isnan(numerator) or np.isinf(numerator): + return 1 # Handle invalid numerator ff = numerator / denominator - # zero of function + if ff == 0: # Check for zero before division + return 1 # Handle by returning a fallback value + + # Update x using Newton's method x = x - f / ff if abs(x - past_value) <= precision: break else: - paste_value = x # update current point + past_value = x # Update current point - if isinstance(x, complex): + if isinstance(x, complex) or np.isinf(x) or np.isnan(x): return 1 else: return x @@ -135,7 +165,7 @@ def compute_geometry(front, extreme, n): return p @staticmethod - @jit(fastmath=True) + @jit(nopython=True, fastmath=True) def pairwise_distances(front, p): m, n = front.shape projected_front = front.copy()