-
Notifications
You must be signed in to change notification settings - Fork 209
/
main.py
46 lines (32 loc) · 1.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import argparse
from solver_encoder import Solver
from data_loader import get_loader
from torch.backends import cudnn
def str2bool(v):
return v.lower() in ('true')
def main(config):
# For fast training.
cudnn.benchmark = True
# Data loader.
vcc_loader = get_loader(config.data_dir, config.batch_size, config.len_crop)
solver = Solver(vcc_loader, config)
solver.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument('--lambda_cd', type=float, default=1, help='weight for hidden code loss')
parser.add_argument('--dim_neck', type=int, default=16)
parser.add_argument('--dim_emb', type=int, default=256)
parser.add_argument('--dim_pre', type=int, default=512)
parser.add_argument('--freq', type=int, default=16)
# Training configuration.
parser.add_argument('--data_dir', type=str, default='./spmel')
parser.add_argument('--batch_size', type=int, default=2, help='mini-batch size')
parser.add_argument('--num_iters', type=int, default=1000000, help='number of total iterations')
parser.add_argument('--len_crop', type=int, default=128, help='dataloader output sequence length')
# Miscellaneous.
parser.add_argument('--log_step', type=int, default=10)
config = parser.parse_args()
print(config)
main(config)