diff --git a/donkeycar/parts/image_transformations.py b/donkeycar/parts/image_transformations.py index e0b07d780..ff82545f1 100644 --- a/donkeycar/parts/image_transformations.py +++ b/donkeycar/parts/image_transformations.py @@ -50,7 +50,15 @@ def image_transformer(name: str, config): config.ROI_TRAPEZE_MIN_Y, config.ROI_TRAPEZE_MAX_Y ) - + elif "TRAPEZE_EDGE" == name: + return cv_parts.ImgTrapezoidalEdgeMask( + config.ROI_TRAPEZE_UL, + config.ROI_TRAPEZE_UR, + config.ROI_TRAPEZE_LL, + config.ROI_TRAPEZE_LR, + config.ROI_TRAPEZE_MIN_Y, + config.ROI_TRAPEZE_MAX_Y + ) elif "CROP" == name: return cv_parts.ImgCropMask( config.ROI_CROP_LEFT, @@ -75,7 +83,7 @@ def image_transformer(name: str, config): return cv_parts.ImgHSV2BGR() elif "RGB2GRAY" == name: return cv_parts.ImgRGB2GRAY() - elif "RBGR2GRAY" == name: + elif "BGR2GRAY" == name: return cv_parts.ImgBGR2GRAY() elif "HSV2GRAY" == name: return cv_parts.ImgHSV2GRAY() @@ -108,7 +116,7 @@ def image_transformer(name: str, config): elif name.startswith("CUSTOM"): return custom_transformer(name, config) else: - msg = f"{name} is not a valid augmentation" + msg = f"{name} is not a valid transformation" logger.error(msg) raise ValueError(msg) @@ -213,3 +221,354 @@ def run(self, image): else: raise ValueError(f"Unable to load custom tranformation module at {file_path}") + +class ImgTransformList: + """ + A list of image transforms supplied by + a json file and run in the order and with + the arguments specified in the json. + """ + def __init__(self, transforms) -> None: + self.transforms = transforms + + @staticmethod + def fromJson(filepath): + config = load_img_transform_json(filepath) + transforms = img_transform_list_from_json(config) + return ImgTransformList(transforms) + + def run(self, image): + for transform in self.transforms: + image = transform.run(image) + return image + + def shutdown(self): + for transform in self.transforms: + if callable(getattr(transform, "shutdown", None)): + transform.shutdown() + + +def img_transform_from_json(transform_config): + """ + Construct a single Image transform from given dictionary. + The dictionary corresponds the the image transform's + constructor arguments, so it can be passed to the + constructor using object destructuring. + """ + if not isinstance(transform_config, object): + raise TypeError("transform_config must be a dictionary") + + + # + # a config is a [string, object] pair + # where the string specifies the transform + # and the optional object provides the arguments + # to it's constructor. + # + transformation = transform_config[0] + args = transform_config[1] if len(transform_config) == 2 else None + transformer = None + + # + # masking transformations + # + if "TRAPEZE_EDGE" == transformation: + transformer = cv_parts.ImgTrapezoidalEdgeMask(**args) + elif 'CROP' == transformation: + transformer = cv_parts.ImgCropMask(**args) + + # + # color space transformations + # + elif "RGB2BGR" == transformation: + transformer = cv_parts.ImgRGB2BGR() + elif "BGR2RGB" == transformation: + transformer = cv_parts.ImgBGR2RGB() + elif "RGB2HSV" == transformation: + transformer = cv_parts.ImgRGB2HSV() + elif "HSV2RGB" == transformation: + transformer = cv_parts.ImgHSV2RGB() + elif "BGR2HSV" == transformation: + transformer = cv_parts.ImgBGR2HSV() + elif "HSV2BGR" == transformation: + transformer = cv_parts.ImgHSV2BGR() + elif "RGB2GREY" == transformation or "RGB2GRAY" == transformation: + transformer = cv_parts.ImgRGB2GRAY() + elif "GREY2RGB" == transformation or "GRAY2RGB" == transformation: + transformer = cv_parts.ImgGRAY2RGB() + elif "BGR2GREY" == transformation or "BGR2GRAY" == transformation: + transformer = cv_parts.ImgBGR2GRAY() + elif "GREY2BGR" == transformation or "GRAY2BGR" == transformation: + transformer = cv_parts.ImgGRAY2BGR() + elif "HSV2GREY" == transformation or "HSV2GRAY" == transformation: + transformer = cv_parts.ImgHSV2GRAY() + elif "CANNY" == transformation: + # canny edge detection + transformer = cv_parts.ImgCanny(**args) + # + # blur transformations + # + elif "GBLUR" == transformation: + transformer = cv_parts.ImgGaussianBlur(**args) + elif "BLUR" == transformation: + transformer = cv_parts.ImgSimpleBlur(**args) + # + # resize transformations + # + elif "RESIZE" == transformation: + transformer = cv_parts.ImageResize(**args) + elif "SCALE" == transformation: + transformer = cv_parts.ImageScale(args.scale, args.scale_height) + + # + # custom transform + # + elif transformation.startswith("CUSTOM"): + transformer = custom_transformer(transformation, args) + + # + # not a valid transform name + # + else: + msg = f"'{transformation}' is not a valid transformation" + logger.error(msg) + raise ValueError(msg) + + return transformer + + +def img_transform_list_from_json(transforms_config): + """ + Parse one or more Image transforms from given list + and return an ImgTransformer that applies + them with the arguments and in the order given + in the file. + + """ + if not isinstance(transforms_config, list): + raise TypeError("transforms_config must be a list") + + transformers = [] + + for transform_config in transforms_config: + transformers.append(img_transform_from_json(transform_config)) + + return transformers + + +def load_img_transform_json(filepath): + """ + Load a json file that specifies a list with one or more + image transforms, their order and their arguments. + + The list will contain a series of tuples as a two + element list. The first element of the tuple is the name + of the transform and the second element is a dictionary + the named arguments for the transform's constructor. + The named arguments using object destructuring except + for the custom transform where the dictionary is + pass as-is without destructuring. + + You can look at the constructor for each image transform + in cv.py to see what the fields of the argument object in + the json should be. You may leave out an argument if it + has a default. + + Here is an example that has one of each transformtion + specified with all of it's arguments. + + ``` + [ + ["BGR2GRAY"], + ["BGR2HSV"], + ["BGR2RGB"], + ["BLUR", {"kernel_size": 5, "kernel_y": null}], + ["CANNY", {"low_threshold": 60, "high_threshold": 110, "aperture_size": 3, "l2gradient": false}], + ["CROP", {"left": 0, "top": 0, "right": 0, "bottom": 0}], + ["GBLUR", {"kernel_size": 5, "kernel_y": null}], + ["GRAY2BGR"], + ["GRAY2RGB"], + ["HSV2BGR"], + ["HSV2RGB"], + ["HSV2GRAY"], + ["RESIZE", {"width": 160, "height": 120}], + ["RGB2BGR"], + ["RGB2GRAY"], + ["RGB2HSV"], + ["SCALE", {"scale": 1.0, "scale_height": null}], + ["TRAPEZE", {"left":0, "right":0, "bottom_left":0, "bottom_right":0, "top":0, "bottom":0, "fill": [255,255,255]}], + ["TRAPEZE_EDGE", {"upper_left":0, "upper_right":0, "lower_left":0, "lower_right":0, "top":0, "bottom":0, "fill": [255,255,255]}] + ] + ``` + + """ + import json + + # + # load and parse the file + # + try: + with open(filepath) as f: + try: + data = json.load(f) + # + # TODO: validate json data against a schema + # + return data + except e: + logger.error(f"Can't parse transforms json due to error: {e}") + raise e + except OSError as e: + logger.error(f"Can't open transforms json file '{filepath}' due to error: {e}") + raise e + + +if __name__ == "__main__": + """ + Image transforms self test. + You provide a json file that specifies a transformation pipeline + and configure either an single image to be loaded or a camera to be used. + The image transformation pipeline is constructed and applied the + the configured image source and shown in an opencv window. + + This json specifies a pipeline that applies canny edge detection to the image. + + ``` + [ + ["RGB2GRAY"], + ["BLUR", {}], + ["CANNY", {}], + ["CROP", {"left": 0, "top": 45, "right": 0, "bottom": 0}], + ["GRAY2RGB"] + ] + ``` + + Here the "BLUR" and "CANNY" transforms are using default parameters, so the + argument object is empty. The "CROP" transform is supplied with a argument object + that specifies all named parameters and their values. The color conversion transforms + "RGB2GRAY" and "GRAY2RGB" do not have arguments so no argument object is supplied. + + If it was in a json file named `canny_pipeline.json` in `pi` home folder the usage would be: + + ``` + cd donkeycar/parts + python image_transformations.py --width=640 --height=480 --json=/Home/pi/canny_pipeline.json + ``` + + """ + import argparse + import sys + import time + import cv2 + import numpy as np + import logging + + # parse arguments + parser = argparse.ArgumentParser() + parser.add_argument("-c", "--camera", type=int, default=0, + help = "index of camera if using multiple cameras") + parser.add_argument("-wd", "--width", type=int, default=160, + help = "width of image to capture") + parser.add_argument("-ht", "--height", type=int, default=120, + help = "height of image to capture") + parser.add_argument("-f", "--file", type=str, + help = "path to image file to user rather that a camera") + parser.add_argument("-js", "--json", type=str, + help = "path to json file with list of tranforms") + + + # Read arguments from command line + args = parser.parse_args() + + image_source = None + help = [] + if args.file is None: + if args.camera < 0: + help.append("-c/--camera must be >= 0") + if args.width is None or args.width < 160: + help.append("-wd/--width must be >= 160") + if args.height is None or args.height < 120: + help.append("-ht/--height must be >= 120") + + if args.json is None: + help.append("-js/--json must be supplied to specify the json file with transformers.") + + + if len(help) > 0: + parser.print_help() + for h in help: + print(" " + h) + sys.exit(1) + + # + # load file OR setup camera + # + cap = None + width = None + height = None + depth = 3 + if args.file is not None: + print(f"Loading image from file `{args.file}`...") + image_source = cv_parts.CvImgFromFile(args.file, image_w=args.width, image_h=args.height, copy=True) + height, width, depth = cv_parts.image_shape(image_source.run()) + else: + print("Initializing camera...") + width = args.width + height = args.height + image_source = cv_parts.CvCam(image_w=width, image_h=height, iCam=args.camera) + print("done.") + + # + # read list transformations from json file + # with fields like: + # + # [ + # ["BGR2GRAY"], + # ["BGR2HSV"], + # ["BGR2RGB"], + # ["BLUR", {"gaussian": false, "kernel": 5, "kernel_y": null}] + # ["CANNY", {"low_threshold": 60, "high_threshold": 110, "aperture": 3}] + # ["CROP", {"left": 0, "top": 0, "right": 0, "bottom": 0}], + # ["GRAY2BGR"], + # ["GRAY2RGB"], + # ["HSV2BGR"], + # ["HSV2RGB"], + # ["HSV2GRAY"], + # ["RESIZE", {"width": 160, "height": 120}], + # ["RGB2BGR"], + # ["RGB2GRAY"], + # ["RGB2HSV"], + # ["SCALE", {"scale_width": 1.0, "scale_height": 1.0}], + # ["TRAPEZE", {"upper_left":0, "upper_right":0, "lower_left":0, "lower_right":0, "top":0, "bottom":0}] + # ] + # + print("Loading tranform list from json file `{args.json}`...") + transformer = ImgTransformList.fromJson(args.json) + print("done.") + + # Creating a window for later use + window_name = 'image_tranformer' + cv2.namedWindow(window_name) + + while(1): + + frame = image_source.run() + + # + # apply the augmentation + # + transformed_image = transformer.run(frame) + + # + # show augmented image + # + cv2.imshow(window_name, transformed_image) + + k = cv2.waitKey(5) & 0xFF + if k == ord('q') or k == ord('Q'): # 'Q' or 'q' + break + + if cap is not None: + cap.release() + + cv2.destroyAllWindows() diff --git a/setup.py b/setup.py index 2bd0bc21c..43c380c9d 100644 --- a/setup.py +++ b/setup.py @@ -24,7 +24,7 @@ def package_files(directory, strip_leading): long_description = fh.read() setup(name='donkeycar', - version="5.0.dev1", + version="5.0.dev2", long_description=long_description, description='Self driving library for python.', url='https://github.com/autorope/donkeycar',