forked from wiibrew/pytorch-yolo2
-
Notifications
You must be signed in to change notification settings - Fork 8
/
detect.py
119 lines (94 loc) · 3.29 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import sys
import time
from PIL import Image, ImageDraw
from models.tiny_yolo import TinyYoloNet
from utils import *
from darknet import Darknet
def detect(cfgfile, weightfile, imgfile):
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = 1
if use_cuda:
m.cuda()
img = Image.open(imgfile).convert('RGB')
sized = img.resize((m.width, m.height))
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes(img, boxes, 'predictions.jpg', class_names)
def detect_cv2(cfgfile, weightfile, imgfile):
import cv2
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = 1
if use_cuda:
m.cuda()
img = cv2.imread(imgfile)
sized = cv2.resize(img, (m.width, m.height))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names)
def detect_skimage(cfgfile, weightfile, imgfile):
from skimage import io
from skimage.transform import resize
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = 1
if use_cuda:
m.cuda()
img = io.imread(imgfile)
sized = resize(img, (m.width, m.height)) * 255
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names)
if __name__ == '__main__':
if len(sys.argv) == 4:
cfgfile = sys.argv[1]
weightfile = sys.argv[2]
imgfile = sys.argv[3]
detect(cfgfile, weightfile, imgfile)
#detect_cv2(cfgfile, weightfile, imgfile)
#detect_skimage(cfgfile, weightfile, imgfile)
else:
print('Usage: ')
print(' python detect.py cfgfile weightfile imgfile')
#detect('cfg/tiny-yolo-voc.cfg', 'tiny-yolo-voc.weights', 'data/person.jpg', version=1)